Cœurs stables de communautés dans les graphes de terrain

Dans de nombreux contextes, des ensembles d'entites en relation peuvent etre modelises par des graphes, dans lesquels les entites individuelles sont representees par des sommets et les relations entre ces entites par des liens. Ces graphes, que nous appellerons "graphes de terrain", peuvent etre rencontres dans le monde reel dans differents domaines tels que les sciences sociales, l'informatique, la biologie, le transport, la linguistique, etc. La plupart des graphes de terrain sont composes de sous-graphes denses faiblement inter-connectes appeles communautes et de nombreux algorithmes ont ete proposes afin d'identifier cette structure communautaire automatiquement. Nous nous sommes interesses aux problemes des algorithmes de detection de communautes, notamment leur non-determinisme et l'instabilite qui en decoule. Nous avons presente une methodologie qui permets d'ameliorer les resultats obtenus avec les techniques actuelles de detection de communautes. Nous avons propose une approche basee sur le concept de communautes fortes ou cœurs de communautes et nous avons montre l'amelioration apportee par notre approche en l'appliquant a des graphes reels et artificiels.

[1]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[2]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[3]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[4]  Santo Fortunato,et al.  Limits of modularity maximization in community detection , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[6]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[7]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[8]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[9]  Xiaodi Huang,et al.  A Framework of Filtering, Clustering and Dynamic Layout Graphs for Visualization , 2005, ACSC.

[10]  Johan Karlsson,et al.  Metrics for Power Spectra: An Axiomatic Approach , 2009, IEEE Transactions on Signal Processing.

[11]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Eric Pardede Community-Built Databases - Research and Development , 2011 .

[13]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[14]  Xuemin Lin,et al.  Web Information Systems Engineering – WISE 2013 , 2013, Lecture Notes in Computer Science.

[15]  Andreas Ludwig,et al.  A Fast Adaptive Layout Algorithm for Undirected Graphs , 1994, GD.

[16]  R. Lathe Phd by thesis , 1988, Nature.

[17]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[18]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[19]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[20]  James Bailey,et al.  Information theoretic measures for clusterings comparison: is a correction for chance necessary? , 2009, ICML '09.

[21]  Heidrun Schumann,et al.  CGV - An interactive graph visualization system , 2009, Comput. Graph..

[22]  Myra Spiliopoulou,et al.  MONIC: modeling and monitoring cluster transitions , 2006, KDD '06.

[23]  Rossano Schifanella,et al.  Folks in Folksonomies: social link prediction from shared metadata , 2010, WSDM '10.

[24]  Eytan Adar,et al.  GUESS: a language and interface for graph exploration , 2006, CHI.

[25]  H JavierGuachalla The Mathematics , 2007 .

[26]  Hans Ramsay,et al.  Pages 81-90 , 2001, The Curie Society.

[27]  Rudi Studer,et al.  The Semantic Web: Research and Applications , 2004, Lecture Notes in Computer Science.

[28]  Marina Meila,et al.  Comparing clusterings: an axiomatic view , 2005, ICML.