Selective vulnerability of the hippocampus in brain ischemia

*Department of Neurophysiology, Institute of Physiology, Medical Faculty, Ruhr-Universitlt Bochum, Universitiitsstr. 150, D-4630 Bochum 1, F.R.G. SDepartment of Functional Neuroanatomy, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67. H-1450 Budapest, Hungary, and MRC Anatomical Neuropharmacology Unit, _ Department of Pha-rmacology, University of Oxford, Oxford, U.K.

[1]  J. Olney,et al.  Glutamate and the pathophysiology of hypoxic–ischemic brain damage , 1986, Annals of neurology.

[2]  F. Plum,et al.  Graded hypoxia-oligemia in rat brain. II. Neuropathological alterations and their implications. , 1973, Archives of neurology.

[3]  R. Busto,et al.  Regional Brain Energy Metabolism after Complete versus Incomplete Ischemia in the Rat in the Absence of Severe Lactic Acidosis , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  T. Nowak,et al.  Opioid peptide levels in gerbil brain after transient ischemia: lasting depletion of hippocampal dynorphin. , 1987, Stroke.

[5]  J. Brierley,et al.  A New Model of Bilateral Hemispheric Ischemia in the Unanesthetized Rat , 1979, Stroke.

[6]  W. Walz Role of glial cells in the regulation of the brain ion microenvironment , 1989, Progress in Neurobiology.

[7]  W. Pulsinelli,et al.  Excitatory Amino Acid and Purinergic Transmitter Involvement in Ischemia-Induced Selective Neuronal Death , 1988 .

[8]  C. Petito,et al.  Delayed Neuronal Recovery and Neuronal Death in Rat Hippocampus following Severe Cerebral Ischemia: Possible Relationship to Abnormalities in Neuronal Processes , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  A. Hamberger,et al.  Ischemia-Induced Shift of Inhibitory and Excitatory Amino Acids from Intra- to Extracellular Compartments , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  L. Sokoloff,et al.  Measurement of local cerebral blood flow with iodo [14C] antipyrine. , 1978, The American journal of physiology.

[11]  L. Miller,et al.  Opiate receptor subtype binding in gerbil hippocampus is altered by forebrain ischemia , 1989, Brain Research.

[12]  R. Schmidt-Kastner,et al.  Immunohistochemistry of glial fibrillary acidic protein, vimentin and S-100 protein for study of astrocytes in hippocampus of rat. , 1990, Journal of chemical neuroanatomy.

[13]  O. Lindvall,et al.  Delayed Postischemic Hypoperfusion: Evidence against Involvement of the Noradrenergic Locus Ceruleus System , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  B. Meldrum,et al.  Calcium Overload in Selectively Vulnerable Neurons of the Hippocampus during and after Ischemia: An Electron Microscopy Study in the Rat , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  K. Kogure,et al.  Disturbed Ca2+ homeostasis in the gerbil hippocampus following brief transient ischemia , 1986, Brain Research.

[16]  K. Kogure,et al.  Protein kinase C activity in the rat hippocampus after forebrain ischemia: autoradiographic analysis by [3H]phorbol 12,13-dibutyrate , 1989, Brain Research.

[17]  K. Kogure,et al.  Quantitative autoradiographic analysis of muscarinic cholinergic and adenosine A1 binding sites after transient forebrain ischemia in the gerbil , 1987, Brain Research.

[18]  W. Kuschinsky,et al.  Local chemical and neurogenic regulation of cerebral vascular resistance. , 1978, Physiological reviews.

[19]  D. Choi,et al.  Glutamate neurotoxicity in cortical cell culture is calcium dependent , 1985, Neuroscience Letters.

[20]  K. Hossmann Resuscitation potentials after prolonged global cerebral ischemia in cats , 1988, Critical care medicine.

[21]  E. Hall,et al.  Quantitative analysis of effects of kappa-opioid agonists on postischemic hippocampal CA1 neuronal necrosis in gerbils. , 1988, Stroke.

[22]  P. Picozzi,et al.  Reperfusion after cerebral ischemia: influence of duration of ischemia. , 1986, Stroke.

[23]  T. Wieloch,et al.  Impairment of protein ubiquitination may cause delayed neuronal death , 1989, Neuroscience Letters.

[24]  H. Edmonds,et al.  Cerebral resuscitation: Pathophysiology and therapy , 1987, Neuroscience & Biobehavioral Reviews.

[25]  N. Diemer,et al.  COMPLETE CEREBRAL ISCHAEMIA IN THE RAT: AN ULTRASTRUCTURAL AND STEREOLOGICAL ANALYSIS OF THE DISTAL STRATUM RADIATUM IN THE HIPPOCAMPAL CA‐1 REGION , 1982, Neuropathology and applied neurobiology.

[26]  K. Kogure,et al.  GABA and Benzodiazepine Receptors in the Gerbil Brain after Transient Ischemia: Demonstration by Quantitative Receptor Autoradiography , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  J. Champagnat,et al.  Metabolic acidosis induced by N-methyl-d-aspartate in brain slices of the neonatal rat: 31P- and 1H-magnetic resonance spectroscopy , 1988, Neuroscience Letters.

[28]  K. Kogure,et al.  Lesions to Schaffer collaterals prevent ischemic death of CA1 pyramidal cells , 1986, Neuroscience Letters.

[29]  C. Cotman,et al.  Excitatory amino acid receptors and ischemic brain damage in the rat , 1987, Neuroscience Letters.

[30]  L. Sokoloff,et al.  Localization of Functional Activity in the Central Nervous System by Measurement of Glucose Utilization with Radioactive Deoxyglucose , 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[32]  M. Raichle,et al.  Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Mikoshiba,et al.  Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage—Immunohistochemical investigation of dendritic damage , 1989, Neuroscience.

[34]  D. Amaral,et al.  Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus , 1996 .

[35]  H. Benveniste,et al.  Ischemic Damage in Hippocampal CA1 is Dependent on Glutamate Release and Intact Innervation from CA3 , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  Menno P. Witter,et al.  Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway , 1988, Neuroscience Letters.

[37]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[38]  B. Siesjö,et al.  Preischemic Hyperglycemia Enhances Postischemic Depression of Cerebral Metabolic Rate , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  K Kahn,et al.  The natural course of experimental cerebral infarction in the gerbil , 1972, Neurology.

[40]  S. Schiff,et al.  Selective neuronal vulnerability to hypoxia in vitro , 1986, Neuroscience Letters.

[41]  S. Rothman,et al.  Delayed neurotoxicity of excitatory amino acids In vitro , 1987, Neuroscience.

[42]  K. Kogure,et al.  Autoradiographic visualization of adenosine A1 receptors in the gerbil hippocampus: changes in the receptor density after transient ischemia , 1985, Brain Research.

[43]  M. Takayasu,et al.  Effects of inhibitory and excitatory amino acid neurotransmitters on isolated cerebral parenchymal arterioles , 1989, Brain Research.

[44]  Takaaki Kirino,et al.  Delayed neuronal death in the gerbil hippocampus following ischemia , 1982, Brain Research.

[45]  G. Somjen,et al.  NMDA antagonists: Lack of protective effect against hypoxic damage in CA1 region of hippocampal slices , 1988, Neuroscience Letters.

[46]  T. Sick,et al.  Calcium-sensitive recovery of extracellular potassium and synaptic transmission in rat hippocampal slices exposed to brief anoxia , 1988, Brain Research.

[47]  I. Silver,et al.  Some effects of ischaemia and hyperglycaemia on neurotransmitter metabolism in rat brain. , 1985, Neurological research.

[48]  J. Phillis,et al.  Deoxycoformycin antagonizes ischemia-induced neuronal degeneration , 1989, Brain Research Bulletin.

[49]  P. Nyberg,et al.  Age-dependent vulnerability of brain choline acetyltransferase activity to transient cerebral ischemia in rats. , 1989, Stroke.

[50]  B. Morris,et al.  Electrical stimulation in vivo increases the expression of proenkephalin mRNA and decreases the expression of prodynorphin mRNA in rat hippocampal granule cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[51]  K. Takakura,et al.  Effect of cyclooxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. , 1989, Stroke.

[52]  M. Victor,et al.  [Memory loss with lesions of hippocampal formation. Report of a case with some remarks on the anatomical basis of memory]. , 1961, Archives of neurology.

[53]  T. Wieloch,et al.  Ischemic Brain Damage in Rats following Cardiac Arrest Using a Long-Term Recovery Model , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[54]  D. Heistad,et al.  Factors involved in the physiological regulation of the cerebral circulation. , 1984, Reviews of physiology, biochemistry and pharmacology.

[55]  F. Keller,et al.  Nerve growth factor increases in adult rat brain after hypoxic injury , 1989, Neuroscience Letters.

[56]  H Benveniste,et al.  Early Postischemic 45Ca Accumulation in Rat Dentate Hilus , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[57]  K. Hisanaga,et al.  Increase in choline acetyltransferase activity in septum of rats after transient forebrain ischemia: A possible role of factors released in the hippocampus , 1989, Neuroscience Letters.

[58]  A. Hansen,et al.  Effect of anoxia on ion distribution in the brain. , 1985, Physiological reviews.

[59]  S. Michaelson,et al.  Relationship between metabolic rate and recovery from radiation injury. , 1962, Radiation research.

[60]  P. Rosenberg,et al.  Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex , 1989, Neuroscience Letters.

[61]  F. Tortella,et al.  Dextromethorphan attenuates post-ischemic hypoperfusion following incomplete global ischemia in the anesthetized rat , 1989, Brain Research.

[62]  K. Kogure,et al.  Mapping second messenger systems in the rat hippocampus after transient forebrain ischemia: in vitro [3H]forskolin and [3H]inositol 1,4,5-triphosphate binding , 1989, Brain Research.

[63]  M. Tseng,et al.  Increased glucose improves recovery of neuronal function after cerebral hypoxia in vitro , 1987, Brain Research.

[64]  J. Passonneau,et al.  An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  B. Siesjö,et al.  Recirculation in the Rat Brain following Incomplete Ischemia , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[66]  K. Hossmann,et al.  Effect of 5-minute ischemia on regional pH and energy state of the gerbil brain: relation to selective vulnerability of the hippocampus. , 1987, Stroke.

[67]  A. Wauquier,et al.  Selective vulnerability of synaptic transmission in hippocampus to ex-vivo ischemia: effects of extracellular ionic substitution in the postischemic period , 1989, Brain Research.

[68]  B. Siesjö,et al.  Thresholds in cerebral ischemia - the ischemic penumbra. , 1981, Stroke.

[69]  E. Nielsen,et al.  2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. , 1990, Science.

[70]  T. Wieloch,et al.  Changes in Excitatory Amino Acid Receptor Binding in the Intact and Decorticated Rat Neostriatum Following Insulin‐Induced Hypoglycemia , 1989, Journal of neurochemistry.

[71]  C. Gall,et al.  Differential regulation of neuropeptide and proto-oncogene mRNA content in the hippocampus following recurrent seizures. , 1987, Brain research.

[72]  K. Kogure,et al.  Prevention of delayed neuronal death in gerbil hippocampus by ion channel blockers. , 1988, Stroke.

[73]  W. Paschen,et al.  Polyamine Changes in Reversible Cerebral Ischemia , 1987, Journal of neurochemistry.

[74]  B. Meldrum,et al.  An adenosine analogue, 2-chloroadenosine, protects against long term development of ischaemic cell loss in the rat hippocampus , 1987, Neuroscience Letters.

[75]  J. Garthwaite,et al.  Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain , 1988, Nature.

[76]  B. Meldrum,et al.  Ischaemic brain damage: the role of excitatory activity and of calcium entry. , 1985, British journal of anaesthesia.

[77]  M. Grafe,et al.  MK-801, an Excitatory Amino Acid Antagonist, Does Not Improve Neurologic Outcome following Cardiac Arrest in Cats , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[78]  N. Diemer,et al.  Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells , 1986, Brain Research.

[79]  A. Schurr,et al.  Lactate-supported synaptic function in the rat hippocampal slice preparation. , 1988, Science.

[80]  B. Siesjö,et al.  Ischemia in normo- and hyperglycemic rats: effects on brain water and electrolytes. , 1987, Stroke.

[81]  M. A. Thomson,et al.  Temporal changes in hippocampal theta activity following twenty minutes of forebrain ischemia in the chronic rat , 1986, Brain Research.

[82]  G. Kreutzberg,et al.  Rapid down regulation of hippocampal adenosine receptors following brief anoxia , 1986, Brain Research.

[83]  J. Deckert,et al.  Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global cerebral ischemia: an in situ hybridization study , 1989, Brain Research.

[84]  S. Levine,et al.  Anoxic-ischemic encephalopathy in rats. , 1960, The American journal of pathology.

[85]  L. Descarries,et al.  Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  N. H. Diemer,et al.  REGIONAL NEURONE DAMAGE AFTER CEREBRAL ISCHAEMIA IN THE NORMO‐ AND HYPOGLYCAEMIC RAT , 1981, Neuropathology and applied neurobiology.

[87]  J. Deckert,et al.  Binding of [3H]inositoltrisphosphate and [3H]phorbol 12,13-dibutyrate in rat hippocampus following transient global ischemia: A quantitative autoradiographic study , 1989, Neuroscience Letters.

[88]  P. Rakić Limits of neurogenesis in primates. , 1985, Science.

[89]  B. Siesjö,et al.  Journal of Cerebral Blood Flow and Metabolism Calcium Accumulation and Neuronal Damage in the Rat Hippocampus following Cerebral Ischemia Operative Procedures , 2022 .

[90]  R. Gill,et al.  Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  R. Ratcheson,et al.  Role for gamma-aminobutyric acid in selective vulnerability in gerbils. , 1989, Stroke.

[92]  G. Mies,et al.  Calcium in the mitochondria following brief ischemia of gerbil brain , 1987, Neuroscience Letters.

[93]  L. Squire Mechanisms of memory. , 1986, Lancet.

[94]  N. Diemer,et al.  Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate , 1982, Acta neurologica Scandinavica.

[95]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[96]  M. Chesler,et al.  Astrocytic Acidosis in Hyperglycemic and Complete Ischemia , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[97]  M. Dichter,et al.  Cellular mechanisms of epilepsy: a status report. , 1987, Science.

[98]  R. Busto,et al.  Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury , 1989, Neuroscience Letters.

[99]  W. Dalton Dietrich,et al.  Small Differences in Intraischemic Brain Temperature Critically Determine the Extent of Ischemic Neuronal Injury , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[100]  Y. Ben-Ari,et al.  Brief anoxic episodes induce long-lasting changes in synaptic properties of rat CA3 hippocampal neurons , 1988, Neuroscience Letters.

[101]  R. Busto,et al.  Histopathological and Hemodynamic Consequences of Complete versus Incomplete Ischemia in the Rat , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[102]  R. Myers,et al.  Neuropathology of systemic circulatory arrest in adult monkeys , 1972, Neurology.

[103]  R. Auer,et al.  Biological differences between ischemia, hypoglycemia, and epilepsy , 1988, Annals of neurology.

[104]  G. Somjen,et al.  Spreading depression-like hypoxic depolarization in CA1 and fascia dentata of hippocampal slices: relationship to selective vulnerability , 1989, Brain Research.

[105]  H. Wagner,et al.  Microphysiology of selectively vulnerable neurons. , 1985, Progress in brain research.

[106]  G. Breese,et al.  Topographical assessment of accumulated radioactivity from [14C]2-deoxyglucose and [6-14C]glucose in rat forebrain at different survival periods , 1989, Neuroscience.

[107]  N. Clark,et al.  Direct Evidence , 1934 .

[108]  C. Cotman,et al.  Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[110]  Meldrum Bs Metabolic factors during prolonged seizures and their relation to nerve cell death. , 1983 .

[111]  Die Topik der Ammonshornschädigung , 1930 .

[112]  G. Dienel,et al.  Uptake of radiolabeled ions in normal and ischemia‐damaged brain , 1986, Annals of neurology.

[113]  Y. Ben-Ari,et al.  Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. , 1989, Journal of neurophysiology.

[114]  R. Osburne,et al.  Cerebral blood flow. A predictor of recovery from ischemia in the gerbil. , 1975, Archives of neurology.

[115]  D A Turner,et al.  Steady-state electrotonic analysis of intracellularly stained hippocampal neurons. , 1980, Journal of neurophysiology.

[116]  K. Krnjević,et al.  Hypoxic changes in hippocampal neurons. , 1989, Journal of neurophysiology.

[117]  J. Nadler,et al.  Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: A silver impregnation study , 1988, Neuroscience.

[118]  R. Broadwell,et al.  Endocytic and exocytic pathways of the neuronal secretory process and trans synaptic transfer of wheat germ agglutinin‐horseradish peroxidase in vivo , 1985, The Journal of comparative neurology.

[119]  H. Edmonds,et al.  Pitfalls in the use of brain slices , 1988, Progress in Neurobiology.

[120]  S. Baldwin,et al.  Anatomical mapping of glucose transporter protein and pyruvate dehydrogenase in rat brain: an immunogold study , 1989, Brain Research.

[121]  R. Sapolsky,et al.  Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. , 1985, Science.

[122]  K. Kogure,et al.  A serotonin S2 antagonist, naftidrofuryl, exhibited a protective effect on ischemic neuronal damage in the gerbil , 1989, Brain Research.

[123]  J. Grotta,et al.  Immunohistochemical Determination of Calcium—Calmodulin Binding Predicts Neuronal Damage after Global Ischemia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[124]  E. Hansson,et al.  Astroglia from defined brain regions as studied with primary cultures , 1988, Progress in Neurobiology.

[125]  Michael D. Taylor,et al.  Pharmacological protection of reoxygenation damage to in vitro brain slice tissue , 1985, Brain Research.

[126]  S. Rothman Synaptic activity mediates death of hypoxic neurons. , 1983, Science.

[127]  B. Siesjö,et al.  Local Cerebral Blood Flow in the Recovery Period following Complete Cerebral Ischemia in the Rat , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[128]  A. Schurr,et al.  Glutamine protects neuronal function against cerebral hypoxia: a study using the in vitro hippocampal slice preparation , 1987, Brain Research.

[129]  B. Meldrum,et al.  Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. , 1984, Science.

[130]  R. S. Sloviter “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies , 1983, Brain Research Bulletin.

[131]  H. Yoshida,et al.  Increase in choline acetyltransferase activity in the nervous system of adult frogs awakened from hibernation , 1979, Journal of neurochemistry.

[132]  J. Nadler,et al.  Postischemic synaptic physiology in area CA1 of the gerbil hippocampus studied in vitro , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[133]  R. Ransom,et al.  Cooperative Modulation of [3H]MK‐801 Binding to the N‐Methyl‐d‐Aspartate Receptor‐Ion Channel Complex by l‐Glutamate, Glycine, and Polyamines , 1988, Journal of neurochemistry.

[134]  A. Novelli,et al.  Glutamate becomes neurotoxic via the N-methyl-d-aspartate receptor when intracellular energy levels are reduced , 1988, Brain Research.

[135]  L. Hertz Features of Astrocytic Function Apparently Involved in the Response of Central Nervous Tissue to Ischemia-Hypoxia , 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[136]  R. Busto,et al.  Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: Correlation with neuropathology , 1985, Annals of neurology.

[137]  A. Foster,et al.  MK-801 is neuroprotective in gerbils when administered during the post-ischaemic period , 1988, Neuroscience.

[138]  G. Kreutzberg,et al.  Ischemia-Induced Neuronal Cell Death, Calcium Accumulation, and Glial Response in the Hippocampus of the Mongolian Gerbil and Protection by Propentofylline (HWA 285) , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[139]  K. Hossmann,et al.  Pial Artery Pressure after One Hour of Global Ischemia , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[140]  G. Lynch,et al.  Long-term potentiation: Persisting problems and recent results , 1988, Brain Research Bulletin.

[141]  P. Lipton,et al.  Calcium and long‐term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. , 1986, The Journal of physiology.

[142]  W. Paschen,et al.  Polyamine metabolism in reversible cerebral ischemia: effect of α-difluoromethylornithine , 1988, Brain Research.

[143]  K. Baimbridge,et al.  Long-term structural changes in the rat hippocampal formation following cerebral ischemia , 1989, Brain Research.

[144]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.

[145]  R. S. Sloviter,et al.  Sustained electrical stimulation of the perforant path duplicates kainate-induced electrophysiological effects and hippocampal damage in rats , 1981, Neuroscience Letters.

[146]  G. Lynch,et al.  Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes. , 1981, Science.

[147]  A. Tamura,et al.  A reversible type of neuronal injury following ischemia in the gerbil hippocampus. , 1986, Stroke.

[148]  K. Hossmann,et al.  Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia , 1990, Neuroscience.

[149]  S. Kataoka,et al.  Quantitative analysis of glucose after transient ischemia in the gerbil hippocampus by light and electron microscope radioautography , 1987, Brain Research.

[150]  K. Kogure,et al.  Postischemic changes of calcium and endogenous antagonist in the rat hippocampus studied by proton-induced X-ray emission analysis , 1989, Brain Research.

[151]  B. Siesjö,et al.  Cerebral metabolism in ischaemia: neurochemical basis for therapy. , 1985, British journal of anaesthesia.

[152]  B. Volpe,et al.  Reference and working memory of rats following hippocampal damage induced by transient forebrain ischemia , 1986, Physiology & Behavior.

[153]  A. Tamura,et al.  Chronic maintenance of presynaptic terminals in gliotic hippocampus following ischemia , 1990, Brain Research.

[154]  P. Coyle,et al.  Spatial features of the rat hippocampal vascular system , 1978, Experimental Neurology.

[155]  R. C. Collins,et al.  Metabolic anatomy of brain: A comparison of regional capillary density, glucose metabolism, and enzyme activities , 1989, The Journal of comparative neurology.

[156]  P. Lipton,et al.  Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice , 1982, The Journal of physiology.

[157]  K. Hossmann,et al.  Relationship between metabolic recovery and the EEG prolonged ischemia of cat brain. , 1986, Stroke.

[158]  R. Ratcheson,et al.  Cerebral metabolic state following complete compression ischemia. , 1974, Brain research.

[159]  G. Lynch,et al.  Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus , 1989, Brain Research.

[160]  R. Auer,et al.  The effect of postischemic blood glucose levels on ischemic brain damage in the rat , 1988, Annals of neurology.

[161]  W. Kuschinsky,et al.  Lack of Capillary Recruitment in the Brains of Awake Rats during Hypercapnia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[162]  S. Rothman,et al.  Blockade of excitatory amino acid receptors protects anoxic hippocampal slices , 1987, Neuroscience.

[163]  F. Gage,et al.  Evidence for amelioration of ischaemic neuronal damage in the hippocampal formation by lesions of the perforant path. , 1985, Neurological research.

[164]  T. Nowak,et al.  Experimental Model for Repetitive Ischemic Attacks in the Gerbil: The Cumulative Effect of Repeated Ischemic Insults , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[165]  W. Paschen Polyamine metabolism in reversible cerebral ischemia. , 1992, Cerebrovascular and brain metabolism reviews.

[166]  Nobuaki Tamamaki,et al.  Disposition of the slab‐like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1990, The Journal of comparative neurology.

[167]  C. Nitsch,et al.  GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca2+-binding protein parvalbumin , 1989, Neuroscience Letters.

[168]  Roland Willems,et al.  Dorsal-ventral gradient in vulnerability of CA1 hippocampus to ischemia: a combined histological and electrophysiological study , 1989, Brain Research.

[169]  B. Volpe,et al.  Preoperative training modifies radial maze performance in rats with ischemic hippocampal injury. , 1989, Stroke.

[170]  J. Phillis Oxypurinol attenuates ischemia-induced hippocampal damage in the gerbil , 1989, Brain Research Bulletin.

[171]  F. Plum,et al.  Moderate hyperglycemia augments ischemic brain damage , 1982, Neurology.

[172]  M. Williams,et al.  The novel N‐Methyl‐D‐Aspartate (NMDA) antagonist CGS 19755 prevents ischemia‐induced reductions of adenosine A1, NMDA, and PCP receptors in gerbil brain , 1988, Synapse.

[173]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[174]  H. Itabashi,et al.  Memory loss due to hippocampal lesions. Report of a case. , 1969, Archives of neurology.

[175]  B. Crain,et al.  Absence of electrographic seizures after transient forebrain ischemia in the Mongolian gerbil , 1989, Brain Research.

[176]  G. Zelenock,et al.  Insulin administration protects neurologic function in cerebral ischemia in rats. , 1988, Stroke.

[177]  T. Yoshimine,et al.  Immunohistochemical Investigation of Cerebral Ischemia in Gerbils , 1985, Journal of neuropathology and experimental neurology.

[178]  P. Lipton,et al.  The effect of hypoxia on evoked potentials in the in vitro hippocampus. , 1979, The Journal of physiology.

[179]  P. Schwartzkroin,et al.  Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus , 1985, The Journal of comparative neurology.

[180]  C. Nitsch,et al.  Preservation of GABAergic perikarya and boutons after transient ischemia in the gerbil hippocampal CA1 field , 1989, Brain Research.

[181]  N. Diemer,et al.  CEREBRAL ISCHAEMIA IN THE RAT: INCREASED PERMEABILITY OF POST‐SYNAPTIC MEMBRANES TO HORSERADISH PEROXIDASE IN THE EARLY POST‐ISCHAEMIC PERIOD , 1983, Neuropathology and applied neurobiology.

[182]  E. Mackenzie,et al.  The concept of coupling blood flow to brain function: Revision required? , 1987, Annals of neurology.

[183]  Jean-Luc Daval,et al.  Protective effect of cyclohexyladenosine on adenosine A1-receptors, guanine nucleotide and forskolin binding sites following transient brain ischemia: a quantitative autoradiographic study , 1989, Brain Research.

[184]  D. Choi Ionic dependence of glutamate neurotoxicity , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[185]  M D Ginsberg,et al.  Rodent models of cerebral ischemia. , 1989, Stroke.

[186]  H. Wiśniewski,et al.  On the relationship of brain vasculature to production of neurological deficit and morphological changes following acute unilateral common carotid artery ligation in gerbils , 1975, Journal of the Neurological Sciences.

[187]  D. Amaral,et al.  Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging , 1989, Nature.

[188]  J. Liebman,et al.  The N-methyl-d-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils , 1988, Brain Research.

[189]  A. Uzan,et al.  Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[190]  K. Hossmann,et al.  NMR Spectroscopic Investigation of the Recovery of Energy and Acid—Base Homeostasis in the Cat Brain after Prolonged Ischemia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[191]  D. Benson,et al.  Amnesia with hippocampal lesions cardiopulmonary arrest , 1984, Neurology.

[192]  S. Rothman Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[193]  B. Siesjö,et al.  Calcium Fluxes, Calcium Antagonists, and Calcium-Related Pathology in Brain Ischemia, Hypoglycemia, and Spreading Depression: A Unifying Hypothesis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[194]  P. Somogyi,et al.  Hippocampal cell death following ischemia: Effects of brain temperature and anesthesia , 1990, Experimental Neurology.

[195]  J. Kemp,et al.  Protection of CA1 pyramidal cell function by MK-801 following ischaemia in the gerbil , 1989, Neuroscience Letters.

[196]  A. Meyer The Selective Regional Vulnerability of the Brain and its Relation to Psychiatric Problems , 1936, Proceedings of the Royal Society of Medicine.

[197]  B. Grøgaard,et al.  Delayed Hypoperfusion after Incomplete Forebrain Ischemia in the Rat. The Role of Polymorphonuclear Leukocytes , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[198]  D. Choi Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage , 1988, Trends in Neurosciences.

[199]  G. Albers,et al.  N‐methyl‐D‐aspartate antagonists: Ready for clinical trial in brain ischemia? , 1989, Annals of neurology.

[200]  T. Lanthorn,et al.  Experimental ischemia induces a persistent depolarization blocked by decreased calcium and NMDA antagonists , 1989, Neuroscience Letters.

[201]  W. Pulsinelli,et al.  Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia , 1982, Annals of neurology.

[202]  R. Busto,et al.  Direct Evidence for Acute and Massive Norepinephrine Release in the Hippocampus during Transient Ischemia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[203]  B. Meldrum,et al.  Long-Term Development of Selective Neuronal Loss and the Mechanism of Protection by 2-Amino-7-Phosphonoheptanoate in a Rat Model of Incomplete Forebrain Ischaemia , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[204]  K. Krnjević,et al.  Changes in membrane currents of hippocampal neurons evoked by brief anoxia. , 1989, Journal of neurophysiology.

[205]  M. Ingvar,et al.  Models for studying long‐term recovery following forebrain ischemia in the rat. 1. Circulatory and functional effects of 4‐vessel occlusion , 1984, Acta neurologica Scandinavica.

[206]  S. Kater,et al.  Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture , 1989, Journal of Neuroscience.

[207]  K. Takakura,et al.  Indomethacin ameliorates ischemic neuronal damage in the gerbil hippocampal CA1 sector. , 1988, Stroke.

[208]  B. Siesjö,et al.  Circulating Catecholamines Modulate Ischemic Brain Damage , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[209]  G. Dienel Regional Accumulation of Calcium in Postischemic Rat Brain , 1984, Journal of neurochemistry.

[210]  D. Choi,et al.  Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. , 1987, Science.

[211]  W. Paschen,et al.  A modified four-vessel occlusion model for inducing incomplete forebrain ischemia in rats. , 1989, Stroke.

[212]  H. Higashi,et al.  Effects of hypoxia on rat hippocampal neurones in vitro. , 1987, The Journal of physiology.

[213]  T. Nowak,et al.  Heat Shock RNA Levels in Brain and Other Tissues After Hyperthermia and Transient Ischemia , 1990, Journal of neurochemistry.

[214]  R. C. Collins,et al.  Excitotoxic mechanisms of epileptic brain damage. , 1986, Advances in neurology.

[215]  M D Ginsberg,et al.  Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. , 1989, Stroke.

[216]  R. Auer,et al.  Neurobehavioral deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[217]  P. Coyle,et al.  Vascular patterns of the rat hippocampal formation , 1976, Experimental Neurology.

[218]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[219]  W. Pulsinelli,et al.  Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[220]  P. Andiné,et al.  Calcium Uptake Evoked by Electrical Stimulation is Enhanced Postischemically and Precedes Delayed Neuronal Death in CA1 of Rat Hippocampus: Involvement of N-Methyl-D-Aspartate Receptors , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[221]  C. Vogt,et al.  Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Variierens der Tiere , 1937 .

[222]  R. Russell,et al.  No-reflow phenomenon in the cerebral circulation of the gerbil. , 1975, Journal of neurology, neurosurgery, and psychiatry.

[223]  R. S. Sloviter,et al.  “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. II. Ultrastructural analysis of acute hippocampal pathology , 1983, Brain Research Bulletin.

[224]  A. W. Brown Structural abnormalities in neurones. , 1977, Journal of clinical pathology. Supplement.

[225]  J. Albrecht,et al.  Rapid decrease of high affinity ouabain binding sites in hippocampal CA1 region following short-term global cerebral ischemia in rat , 1989, Brain Research.

[226]  J. Dambrosia,et al.  Cyclohexyl adenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus. , 1988, Stroke.

[227]  T BROMAN,et al.  BRAIN EDEMA. , 1964, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[228]  G. Somjen Basic Mechanisms in Cerebral Hypoxia and Stroke: Background, review and conclusions , 1988 .

[229]  J. Olney Excitotoxins: An Overview , 1983 .

[230]  W. Pulsinelli,et al.  The response of GABAergic and cholinergic neurons to transient cerebral ischemia , 1982, Brain Research.

[231]  F. Gage,et al.  Astrocytes are important for sprouting in the septohippocampal circuit , 1988, Experimental Neurology.

[232]  F. Plum,et al.  Selective chromatolysis of neurons in the gerbil brain: A possible consequence of “epileptic” activity produced by common carotid artery occlusion , 1979, Annals of neurology.

[233]  K. Reid,et al.  Lactic acidosis and recovery of neuronal function following cerebral hypoxia in vitro , 1988, Brain Research.

[234]  G. Duncan,et al.  Cerebral metabolic mapping at the cellular level with dry-mount autoradiography of [3H]2-deoxyglucose , 1987, Brain Research.

[235]  W. Pulsinelli,et al.  Regional Protein Synthesis in Rat Brain Following Acute Hemispheric Ischemia , 1980, Journal of neurochemistry.

[236]  M. Taussig The Nervous System , 1991 .

[237]  T. Yanagihara,et al.  Cerebral ischemia in the gerbil: Transmission electron microscopic and immunoelectron microscopic investigation , 1986, Brain Research.

[238]  W. Paschen,et al.  Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils. , 1987, Neurochemical pathology.

[239]  C. Rossberg,et al.  Vinpocetine prevents ischemic cell damage in rat hippocampus. , 1988, Life sciences.

[240]  W. Spielmeyer Die Pathogenese des epileptischen Krampfes , 1927 .

[241]  G. Kreutzberg,et al.  Adenosine receptor density and the depression of evoked neuronal activity in the rat hippocampus in vitro , 1983, Neuroscience Letters.

[242]  W. Pulsinelli Selective neuronal vulnerability: morphological and molecular characteristics. , 1985, Progress in brain research.

[243]  T. Wieloch Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. , 1985, Science.

[244]  A. Duhaime,et al.  Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors? , 1989, Brain Research.

[245]  Yasuo Kawaguchi,et al.  Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin , 1987, Brain Research.

[246]  J. Deckert,et al.  Evidence for pre- and postsynaptic localization of adenosine A1 receptors in the CA1 region of rat hippocampus: a quantitative autoradiographic study , 1988, Brain Research.

[247]  F. Block,et al.  Spatial learning is affected by transient occlusion of common carotid arteries (2VO): Comparison of behavioural and histopathological changes after ‘2VO’ and ‘four-vessel-occlusion’ in rats , 1990, Neuroscience Letters.

[248]  Robert Siman,et al.  Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo , 1988, Neuron.

[249]  G. Kreutzberg,et al.  Propentofylline (HWA 285) protects hippocampal neurons of Mongolian gerbils against ischemic damage in the presence of an adenosine antagonist , 1988, Neuroscience Letters.

[250]  J. Olney,et al.  Calcium influx accompanies but does not cause excitotoxin-induced neuronal necrosis in retina , 1985, Brain Research Bulletin.

[251]  B. Siesjö Historical Overview , 1988, Annals of the New York Academy of Sciences.

[252]  J. Miller,et al.  Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat , 1982, Brain Research.

[253]  B. Siesjö,et al.  Acidosis and ischemic brain damage. , 1988, Neurochemical pathology.

[254]  K. Hossmann,et al.  Cerebral protein synthesis and ischemia. , 1985, Progress in brain research.

[255]  F. Nicoletti,et al.  Stimulation of Inositol Phospholipid Hydrolysis by Excitatory Amino Acids Is Enhanced in Brain Slices from Vulnerable Regions after Transient Global Ischemia , 1989, Journal of neurochemistry.

[256]  F. Plum What causes infarction in ischemic brain? , 1983, Neurology.

[257]  M. Frotscher,et al.  Neurotransmission in the hippocampus. , 1988, Advances in anatomy, embryology, and cell biology.

[258]  G. Kreutzberg,et al.  Protection against ischemic brain damage using propentofylline in gerbils. , 1988, Stroke.

[259]  J. Brierley,et al.  Anoxic-ischaemic cell change in rat brain light microscopic and fine-structural observations. , 1972, Journal of the neurological sciences.

[260]  D. Graham,et al.  Experimental cerebral oligemia and ischemia produced by intracranial hypertension. Part 1: Pathophysiology, electroencephalography, cerebral blood flow, blood-brain barrier, and neurological function. , 1975, Journal of neurosurgery.

[261]  D. Choi,et al.  N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. , 1987, The Journal of pharmacology and experimental therapeutics.

[262]  R. Auer,et al.  Pre- and Post-Ischemic Administration of Dizocilpine (MK-801) Reduces Cerebral Necrosis in the Rat , 1989, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[263]  W. Armstead,et al.  Journal of Cerebral Blood Flow and Metabolism Cerebral Superoxide Anion Generation during Seizures in Newborn Pigs , 2022 .

[264]  S. B. Kater,et al.  Development and selective neurodegeneration in cell cultures from different hippocampal regions , 1989, Brain Research.

[265]  M. Kameyama,et al.  A new model of bilateral hemispheric ischemia in the rat--three vessel occlusion model. , 1985, Stroke.

[266]  H. Weiss,et al.  Alterations in perfused capillary morphometry in awake vs anesthetized brain , 1986, Brain Research.

[267]  F Plum,et al.  Brief hypoxia-ischemia initially damages cerebral neurons. , 1975, Archives of neurology.

[268]  R. Dempsey,et al.  Ornithine Decarboxylase Activity and Immunohistochemical Location in Postischemic Brain , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[269]  D. Amaral,et al.  An experimental analysis of the origins of somatostatin-like immunoreactivity in the dentate gyrus of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[270]  K. Kogure,et al.  Neuronal damage in the rat hippocampus in a new model of repeated reversible transient cerebral ischemia , 1989, Brain Research.

[271]  B. Volpe,et al.  Dementia with bilateral medial tempora1 lobe ischemia , 1985, Neurology.

[272]  A. Schousboe,et al.  Immunocytochemical investigation of L‐glutamic acid decarboxylase in the rat hippocampal formation: The influence of transient cerebral ischemia , 1989, The Journal of comparative neurology.

[273]  W. Kuschinsky,et al.  Interdependency of local capillary density, blood flow, and metabolism in rat brains. , 1986, The American journal of physiology.

[274]  M. Patel,et al.  Blockade of N-methyl-D-aspartate receptors prevents cyanide-induced neuronal injury in primary hippocampal cultures. , 1992, Toxicology and applied pharmacology.

[275]  K. Hossmann,et al.  Recovery of Monkey Brain after Prolonged Ischemia. I. Electrophysiology and Brain Electrolytes , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[276]  B. Scheithauer,et al.  Evaluation of the glutamate antagonist dizocilipine maleate (MK-801) on neurologic outcome in a canine model of complete cerebral ischemia: correlation with hippocampal histopathology , 1989, Brain Research.

[277]  N. Diemer,et al.  Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischaemia in the rat , 1984, Brain Research.

[278]  T. Yoshimine,et al.  Immunohistochemical investigation of regional cerebral ischemia in the gerbil: Occlusion of the posterior communicating artery , 1986, Brain Research.

[279]  F. Plum,et al.  Delayed hippocampal damage in humans following cardiorespiratory arrest , 1987, Neurology.

[280]  M. Nedergaard,et al.  Cell Density and Cortex Thickness in the Border Zone Surrounding Old Infarcts In The Human Brain , 1984, Stroke.

[281]  R. Dingledine,et al.  The in vitro brain slice as a useful neurophysiological preparation for intracellular recording , 1980, Journal of Neuroscience Methods.

[282]  G. Lynch,et al.  The NMDA receptor-mediated components of responses evoked by patterned stimulation are not increased by long-term potentiation , 1989, Brain Research.

[283]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[284]  B. Siesjö,et al.  Chronic Dexamethasone Pretreatment Aggravates Ischemic Neuronal Necrosis , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[285]  T. Nowak,et al.  Changes in Brain Energy Metabolism and Protein Synthesis Following Transient Bilateral Ischemia in the Gerbil , 1985, Journal of neurochemistry.

[286]  J. Sweatt,et al.  Mechanisms of memory. , 2003, Journal of geriatric psychiatry and neurology.

[287]  J. Hounsgaard,et al.  Anoxia increases potassium conductance in hippocampal nerve cells. , 1982, Acta physiologica Scandinavica.

[288]  D. C. Wright,et al.  The effect of unilateral and bilateral removal of the entorhinal cortex on the glucose utilization in various hippocampal regions in the rat , 1988, Neuroscience Letters.

[289]  G. Somjen,et al.  Chlorpromazine protects brain tissue in hypoxia by delaying spreading depression-mediated calcium influx , 1986, Brain Research.

[290]  B. Meldrum,et al.  Status epilepticus: The reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus , 1984, Neuroscience.

[291]  W. Heiss,et al.  Effect of Nimodipine on Regional Cerebral Glucose Metabolism in Patients with Acute Ischemic Stroke as Measured by Positron Emission Tomography , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[292]  G. Dienel,et al.  Temporal Profiles of Proteins Responsive to Transient Ischemia , 1985, Journal of neurochemistry.

[293]  C. Cotman,et al.  Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[294]  R. Busto,et al.  Effect of Transient Cerebral Ischemia on Metabolic Activation of a Somatosensory Circuit , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[295]  T. Blackstad Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination , 1956, The Journal of comparative neurology.

[296]  R. Busto,et al.  Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia , 1988, Neuroscience Letters.

[297]  C. D. Stern,et al.  Handbook of Chemical Neuroanatomy Methods in Chemical Neuroanatomy. Edited by A. Bjorklund and T. Hokfelt. Elsevier, Amsterdam, 1983. Cloth bound, 548 pp. UK £140. (Volume 1 in the series). , 1986, Neurochemistry International.

[298]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[299]  P. Somogyi,et al.  Simultaneous recording of local electrical activity, partial oxygen tension and temperature in the rat hippocampus with a chamber-type microelectrode. Effects of anaesthesia, ischemia and epilepsy , 1989, Neuroscience.

[300]  K. Hossmann Development and Resolution of Ischemic Brain Swelling , 1976 .

[301]  R. Siman,et al.  Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[302]  S. Rothman The neurotoxicity of excitatory amino acids is produced by passive chloride influx , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[303]  N. Diemer,et al.  Increased 2‐deoxyglucose uptake in hippocampus, globus pallidus and substantia nigra after cerebral ischemia , 1980, Acta neurologica Scandinavica.

[304]  B. Siesjö,et al.  Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat. , 1983, Acta physiologica Scandinavica.

[305]  B. Siesjö,et al.  Accumulation of Calcium and Loss of Potassium in the Hippocampus following Transient Cerebral Ischemia: A Proton Microprobe Study , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[306]  K. Hossmann Treatment of Experimental Cerebral Ischemia , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[307]  F. Gaarskjaer The organization and development of the hippocampal mossy fiber system , 1986, Brain Research Reviews.

[308]  M. Kowada,et al.  Cerebral ischemia. II. The no-reflow phenomenon. , 1968, The American journal of pathology.

[309]  H. Benveniste,et al.  Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis , 1984, Journal of neurochemistry.

[310]  F. Marcoux,et al.  Ketamine prevents ischemic neuronal injury , 1988, Brain Research.

[311]  M D Ginsberg,et al.  Coupled forebrain increases of local cerebral glucose utilization and blood flow during physiologic stimulation of a somatosensory pathway in the rat , 1987, Neurology.

[312]  L. Jenkins,et al.  A Quantitative Analysis of Glial Swelling and Ischemic Neuronal Injury Following Complete Cerebral Ischemia , 1984 .

[313]  W. W. Anderson,et al.  NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. , 1989, Science.

[314]  J. Fawcett,et al.  Regressive events in neurogenesis. , 1984, Science.

[315]  E. Hall,et al.  21-Aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. , 1988, Stroke.

[316]  I. Kass,et al.  The N-methyl-d-aspartate antagonists aminophosphonovaleric acid and MK-801 reduce anoxic damage to dentate granule and CA1 pyramidal cells in the rat hippocampal slice , 1989, Experimental Neurology.

[317]  A. Kriegstein,et al.  Glutamate neurotoxicity in cortical cell culture , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[318]  M. Frotscher,et al.  Glutamate decarboxylase-immunoreactive neurons in the aging rat hippocampus are more resistant to ischemia than CA1 pyramidal cells , 1988, Neuroscience Letters.

[319]  A. Guidotti Neurotoxicity of excitatory amino acids , 1990 .

[320]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[321]  B. Volpe,et al.  Retention of reference memory following ischemic hippocampal damage , 1987, Physiology & Behavior.

[322]  I. Silver,et al.  Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion , 1984, Brain Research.

[323]  C. Rossberg,et al.  Phencyclidine reduces postischemic neuronal necrosis in rat hippocampus without changing blood flow , 1988, Neuroscience Letters.

[324]  D. Choi,et al.  Glutamate neurotoxicity and diseases of the nervous system , 1988, Neuron.

[325]  J. Olszewski,et al.  Penetration of radioactive bovine albumin from cerebrospinal fluid into brain tissue , 1960, Neurology.

[326]  T. Babb Metabolic, morphologic and electrophysiologic profiles of human temporal lobe foci: an attempt at correlation. , 1986, Advances in experimental medicine and biology.

[327]  J. Pretorius,et al.  Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[328]  M. Kowada,et al.  Cerebral ischemia. III. Vascular changes. , 1968, The American journal of pathology.

[329]  Katsuharukimoto,et al.  Cerebral Uptake of Glucose and Oxygen in the Cat Brain After Prolonged Ischemia , 1976 .

[330]  T. Wieloch,et al.  Postischemic Administration of Idazoxan, an α-2 Adrenergic Receptor Antagonist, Decreases Neuronal Damage in the Rat Brain , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[331]  T. Yaksh,et al.  Systematic Studies on the Effects of the NMDA Receptor Antagonist MK-801 on Cerebral Blood Flow and Responsivity, EEG, and Blood-Brain Barrier following Complete Reversible Cerebral Ischemia , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[332]  B. Meldrum,et al.  Protection against hypoxic/ischaemic brain damage with excitatory amino acid antagonists. , 1987, Medical biology.

[333]  T. Yanagihara,et al.  Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils. , 1988, Stroke.

[334]  A. Unterberg,et al.  Brain edema factors: current state with particular reference to plasma constituents and glutamate. , 1980, Advances in neurology.

[335]  B. Siesjö Cell Damage in the Brain: A Speculative Synthesis , 1984, Acta psychiatrica Scandinavica. Supplementum.

[336]  B. Siesjö,et al.  Models for studying long‐term recovery following forebrain ischemia in the rat. 2. A 2‐vessel occlusion model , 1984, Acta neurologica Scandinavica.

[337]  S. Rothman,et al.  Ketamine protects hippocampal neurons from anoxia in vitro , 1987, Neuroscience.

[338]  Kyuya Kogure,et al.  The mechanism of ischemia-induced brain cell injury. The membrane theory. , 1988, Neurochemical pathology.

[339]  W. Pulsinelli,et al.  Regional Energy Balance in Rat Brain After Transient Forebrain Ischemia , 1983, Journal of neurochemistry.

[340]  T. Wieloch Neurochemical correlates to selective neuronal vulnerability. , 1985, Progress in brain research.

[341]  T. Sick,et al.  Extracellular potassium ion activity and electrophysiology in the hippocampal slice: paradoxical recovery of synaptic transmission during anoxia , 1987, Brain Research.

[342]  B. Fredholm,et al.  Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment , 1989, Neuroscience Letters.

[343]  H. Benveniste,et al.  Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia , 1988, Acta neurologica Scandinavica.

[344]  W. Paschen,et al.  Putrescine content and structural defects in isolated fractions of rat brain after reversible cerebral ischemia , 1990, Experimental Neurology.

[345]  P. Lipton,et al.  Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea‐pig hippocampus , 1982, The Journal of physiology.

[346]  R. E. Blair,et al.  Phenytoin protects against ischemia-produced neuronal cell death , 1989, Brain Research.

[347]  T. Yoshimine,et al.  Immunohistochemical investigation of cerebral ischemia during recirculation. , 1985, Journal of neurosurgery.

[348]  O. Lindvall,et al.  Lesions of the locus coeruleus system aggravate ischemic damage in the rat brain , 1985, Neuroscience Letters.

[349]  K. Hossmann,et al.  Reversibility of ischemic brain damage. , 1973, Archives of neurology.