Surface roughness from highlight structure.

Highlights are due to specular reflection and cause the lustrous or mirrorlike appearance of many material surfaces. We investigated in detail the structure of highlight patterns that are due to material surface roughness. We interpret results in terms of a simple model of a random Gaussian surface. The model's prediction corresponds with the microscopic measurement within a factor of 2. The method allows one to rank generally the roughness of the surfaces of the fruit samples by purely optical means. This simple procedure for estimating surface roughness from images has implications for visual perception and graphic rendering.

[1]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[3]  J. Perrin,et al.  Optical surface roughness determination using speckle correlation technique. , 1975, Applied optics.

[4]  Toshimitsu Asakura,et al.  Measurement of surface roughness properties by means of laser speckle techniques , 1976 .

[5]  Toshimitsu Asakura,et al.  Measurement of surface roughness properties by using image speckle contrast , 1976 .

[6]  Toshimitsu Asakura,et al.  Roughness measurements of metal surfaces using laser speckle , 1977 .

[7]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[8]  B J Pernick,et al.  Surface roughness measurements with an optical Fourier spectrum analyzer. , 1979, Applied Optics.

[9]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[10]  Surface Roughness Measurement with Speckle Intensity Distribution Detected Using a Linear Image-Sensor , 1982 .

[11]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[12]  John C. Stover,et al.  Calculation Of Surface Statistics From Light Scatter , 1984 .

[13]  Junji Ohtsubo,et al.  Measurement of roughness properties of diamond-turned metal surfaces using light-scattering method , 1986 .

[14]  R. Kusy,et al.  Surface roughness of stainless steel and electroformed nickel standards using a HeNe laser , 1987 .

[15]  T. Kanade,et al.  USING A COLOR REFLECTION MODEL TO SEPARATE HIGHLIGHTS FROM OBJECT COLOR , 1987 .

[16]  Kimiyuki Mitsui,et al.  Development Of A High Resolution Sensor For Surface Roughness , 1988 .

[17]  R. Brodmann,et al.  Comparison Of Light Scattering From Rough Surfaces With Optical And Mechanical Profilometry , 1989, Other Conferences.

[18]  C. Gorecki Classification of rough surfaces: comparison between two hybrid optical coherent processors , 1989 .

[19]  C. Gorecki Optical classification of machined metal surfaces by fourier spectrum sampling , 1990 .

[20]  K. Peiponen,et al.  Metal surface roughness and optical reflectance , 1990 .

[21]  E Marx,et al.  Direct and inverse problems for light scattered by rough surfaces. , 1990, Applied optics.

[22]  S. Kurada,et al.  Texture analysis of rough surfaces using optical Fourier transform , 1991 .

[23]  Takeo Kanade,et al.  Surface Reflection: Physical and Geometrical Perspectives , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  T V Vorburger,et al.  Light-scattering measurement of the rms slopes of rough surfaces. , 1991, Applied optics.

[25]  C Gorecki Surface classification by an optoelectronic implementation of the Karhunen-Loève expansion. , 1991, Applied optics.

[26]  Joakim P. Ingers,et al.  Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region , 1991, Other Conferences.

[27]  M. Kurita,et al.  A Technique for Rapidly Measuring Surface Roughness Using a Laser , 1992 .

[28]  T. Asakura,et al.  Specular reflectance of cold-rolled aluminum surfaces , 1992 .

[29]  L. B. Wolff Diffuse-reflectance model for smooth dielectric surfaces , 1994 .