Energy-per-Bit Limits in Plasmonic Integrated Photodetectors

The energy consumption per transmitted bit is becoming a crucial figure of merit for communication channels. In this paper, we study the design tradeoffs in photodetectors, utilizing the energy per bit as a benchmark. We propose a generic model for a photodetector that takes optical and electrical properties into account. Using our formalism, we show how the parasitic capacitance of photodetectors can drastically alter the parameter values that lead to the optimal design. Finally, we apply our theory to a practical case study for an integrated plasmonic photodetector, showing that energies per bit below 100 attojoules are feasible despite metallic losses and within noise limitations without the introduction of an optical cavity or voltage amplifying receiver circuits.

[1]  A. Bhatnagar,et al.  High-impedance high-frequency silicon detector response for precise receiverless optical clock injection , 2002, SPIE OPTO.

[2]  D. Miller,et al.  Routing and photodetection in subwavelength plasmonic slot waveguides , 2012 .

[3]  Stephen B. Alexander Optical Communication Receiver Design , 1997 .

[4]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[5]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[6]  A. Emami-Neyestanak,et al.  A 1.6 Gb/s, 3 mW CMOS receiver for optical communication , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[7]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[8]  Chih-Hung Chen,et al.  Thermal noise performance in recent CMOS technologies , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[9]  David A. B. Miller,et al.  Photonic A/D conversion using low-temperature-grown GaAs MSM switches integrated with Si-CMOS , 2003 .

[10]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[11]  J. E. Roth,et al.  Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells , 2012, IEEE Journal of Quantum Electronics.

[12]  D. Miller Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[13]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[14]  Marc Sorel,et al.  Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). , 2008, Optics express.

[15]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[16]  Xiaodong Yang,et al.  GaInNAs resonant-cavity-enhanced photodetector operating at 1.3 μm , 1999 .

[17]  A.M. Weiner,et al.  Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors , 1997, IEEE Photonics Technology Letters.

[18]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[19]  N. Feng,et al.  High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide , 2009 .

[20]  Guo-Qiang Lo,et al.  Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector. , 2011, Nano letters.

[21]  Samuel Palermo,et al.  Power Efficiency Comparisons of Interchip Optical Interconnect Architectures , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  John Cunningham,et al.  Silicon waveguide coupled resonator infrared detector , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[23]  David A. B. Miller,et al.  Receiver-less optical clock injection for clock distribution networks , 2003 .

[24]  Mike Ignatowski,et al.  Exploitation of optical interconnects in future server architectures , 2005, IBM J. Res. Dev..

[25]  O. Fidaner,et al.  Ge–SiGe Quantum-Well Waveguide Photodetectors on Silicon for the Near-Infrared , 2007, IEEE Photonics Technology Letters.

[26]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[27]  D. Miller,et al.  Characteristic Impedance Model for Plasmonic Metal Slot Waveguides , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Ashok V. Krishnamoorthy,et al.  Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap , 1996 .

[29]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[30]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[31]  Jasprit Singh,et al.  Semiconductor Device Physics and Design , 2007 .