UvA-DARE (Digital Academic Repository) A Probabilistic Model of Meter Perception: Simulating Enculturation

Enculturation is known to shape the perception of meter in music but this is not explicitly accounted for by current cognitive models of meter perception. We hypothesize that the induction of meter is a result of predictive coding: interpreting onsets in a rhythm relative to a periodic meter facilitates prediction of future onsets. Such prediction, we hypothesize, is based on previous exposure to rhythms. As such, predictive coding provides a possible explanation for the way meter perception is shaped by the cultural environment. Based on this hypothesis

[1]  Justin London,et al.  Rhythm histograms and musical meter: A corpus study of Malian percussion music , 2016, Psychonomic bulletin & review.

[2]  Steven M. Demorest,et al.  The Influence of Contextual Cues on Cultural Bias in Music Memory , 2016 .

[3]  Geraint A. Wiggins,et al.  Linking melodic expectation to expressive performance timing and perceived musical tension. , 2016, Journal of experimental psychology. Human perception and performance.

[4]  A. Holzapfel Relation Between Surface Rhythm and Rhythmic Modes in Turkish Makam Music , 2015 .

[5]  M. Pearce,et al.  Predictive uncertainty in auditory sequence processing , 2014, Front. Psychol..

[6]  Maria A. G. Witek,et al.  Syncopation, Body-Movement and Pleasure in Groove Music , 2014, PloS one.

[7]  M. Pearce,et al.  Electrophysiological correlates of melodic processing in congenital amusia , 2013, Neuropsychologia.

[8]  Geraint A. Wiggins,et al.  Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music , 2013, Cognitive, Affective, & Behavioral Neuroscience.

[9]  Geraint A. Wiggins,et al.  Auditory Expectation: The Information Dynamics of Music Perception and Cognition , 2012, Top. Cogn. Sci..

[10]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[11]  Sarah C. Creel Similarity-based restoration of metrical information: Different listening experiences result in different perceptual inferences , 2012, Cognitive Psychology.

[12]  M. Pearce,et al.  Tracking of pitch probabilities in congenital amusia , 2012, Neuropsychologia.

[13]  E. Hannon,et al.  Familiarity overrides complexity in rhythm perception: a cross-cultural comparison of American and Turkish listeners. , 2012, Journal of experimental psychology. Human perception and performance.

[14]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[15]  David Temperley,et al.  Modeling Common-Practice Rhythm , 2010 .

[16]  David Temperley,et al.  A Unified Probabilistic Model for Polyphonic Music Analysis , 2009 .

[17]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[18]  David Huron Sweet Anticipation: Music and the Psychology of Expectation , 2006 .

[19]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[20]  S. Trehub,et al.  Tuning in to musical rhythms: infants learn more readily than adults. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  S. Trehub,et al.  Metrical Categories in Infancy and Adulthood , 2005, Psychological science.

[23]  Geraint A. Wiggins,et al.  Improved Methods for Statistical Modelling of Monophonic Music , 2004 .

[24]  Tuomas Eerola,et al.  The role of melodic and temporal cues in perceiving musical meter. , 2004, Journal of experimental psychology. Human perception and performance.

[25]  David Temperley,et al.  An Evaluation System for Metrical Models , 2004, Computer Music Journal.

[26]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[27]  P. Kantor Foundations of Statistical Natural Language Processing , 2001, Information Retrieval.

[28]  Ian Cross,et al.  The Andean anacrusis? Rhythmic structure and perception in Easter songs of Northern Potosí, Bolivia , 2000 .

[29]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[30]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[31]  C. Krumhansl,et al.  Mental representations for musical meter. , 1990, Journal of experimental psychology. Human perception and performance.

[32]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[33]  Robert B. Cantrick,et al.  A Generative Theory of Tonal Music , 1985 .

[34]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[35]  David Locke,et al.  Principles of Offbeat Timing and Cross-Rhythm in Southern Eve Dance Drumming , 1982 .

[36]  H C Longuet-Higgins,et al.  The Perception of Musical Rhythms , 1982, Perception.

[37]  Leonard B. Meyer Meaning in music and information theory. , 1957 .

[38]  Henkjan Honing,et al.  Structure and Interpretation of Rhythm in Music , 2013 .

[39]  W. L. Windsor Music and Probability , 2009 .

[40]  Steven M. Demorest,et al.  Cultural constraints on music perception and cognition. , 2009, Progress in brain research.

[41]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[42]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[43]  Yoram Hirshfeld,et al.  for Probabilistic , 1999 .

[44]  Mark Steedman,et al.  On Interpreting Bach , 1987 .

[45]  Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science. , 2022 .