Recent progress in rational design of anode materials for high-performance Na-ion batteries

[1]  F. Ciucci,et al.  Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb2S3 Anodes for Sodium Ion Batteries , 2017 .

[2]  Meilin Liu,et al.  Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets. , 2016, ACS nano.

[3]  Yang Zheng,et al.  Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vapor‐Redistribution for High‐Energy Sodium‐Ion Batteries , 2016 .

[4]  Ting Lu,et al.  One-step microwave-assisted synthesis of Sb2O3/reduced graphene oxide composites as advanced anode materials for sodium-ion batteries , 2016 .

[5]  Heng Su,et al.  Transition metal oxides for sodium-ion batteries , 2016 .

[6]  Bing Sun,et al.  Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries , 2016 .

[7]  Xingguo Qi,et al.  Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications , 2016 .

[8]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[9]  Yunhui Huang,et al.  A Si/C nanocomposite anode by ball milling for highly reversible sodium storage , 2016 .

[10]  B. Hwang,et al.  Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode , 2016 .

[11]  Di Bao,et al.  A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[12]  P. Ajayan,et al.  Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers , 2016 .

[13]  A. Manthiram,et al.  High-Performance Red P-Based P–TiP2–C Nanocomposite Anode for Lithium-Ion and Sodium-Ion Storage , 2016 .

[14]  Zhaoqiang Li,et al.  Low‐Temperature Solution‐Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries , 2016 .

[15]  M. Dahbi,et al.  Iron phosphide as negative electrode material for Na-ion batteries , 2016 .

[16]  Xin-bo Zhang,et al.  Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High‐Performance Na‐Ion Batteries , 2016 .

[17]  Hyun-Wook Lee,et al.  Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries , 2016 .

[18]  Jiangfeng Qian,et al.  Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries , 2016 .

[19]  Jiaqiang Huang,et al.  Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries , 2016 .

[20]  Xiong Wen Lou,et al.  Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries , 2016 .

[21]  Yunhui Huang,et al.  Integrated Intercalation‐Based and Interfacial Sodium Storage in Graphene‐Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel , 2016 .

[22]  Hyunchul Kim,et al.  Understanding Origin of Voltage Hysteresis in Conversion Reaction for Na Rechargeable Batteries: The Case of Cobalt Oxides , 2016 .

[23]  Zhiqiang Gao,et al.  Improving the Specific Capacity and Cyclability of Sodium‐Ion Batteries by Engineering a Dual‐Carbon Phase‐Modified Amorphous and Mesoporous Iron Phosphide , 2016 .

[24]  Zhong Jin,et al.  Emerging non-lithium ion batteries , 2016 .

[25]  Q. Zhuang,et al.  Superior cycle stability of nitrogen-doped graphene nanosheets for Na-ion batteries , 2016 .

[26]  Hui Xu,et al.  Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries , 2016 .

[27]  S. Karmakar,et al.  Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries , 2016 .

[28]  Zhenxiang Cheng,et al.  Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[29]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[30]  Chao-ying Wang,et al.  Effects of 30° partial dislocation and stacking fault on Na and Mg storage and diffusion in Si anode , 2016 .

[31]  Jian Yang,et al.  Double‐Walled Sb@TiO2−x Nanotubes as a Superior High‐Rate and Ultralong‐Lifespan Anode Material for Na‐Ion and Li‐Ion Batteries , 2016, Advanced materials.

[32]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[33]  Wei Pan,et al.  Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[34]  Yong‐Sheng Hu,et al.  Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries , 2016 .

[35]  Xuan Zhou,et al.  Co3O4 carbon nanofiber mats as negative electrodes for sodium-ion batteries , 2016 .

[36]  L. Gu,et al.  Controlled SnO2 Crystallinity Effectively Dominating Sodium Storage Performance , 2016 .

[37]  Huan Liu,et al.  Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance , 2016 .

[38]  H. Fjellvåg,et al.  How Crystallite Size Controls the Reaction Path in Nonaqueous Metal Ion Batteries: The Example of Sodium Bismuth Alloying , 2016 .

[39]  Jinkui Feng,et al.  Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets , 2016 .

[40]  Huakun Liu,et al.  Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metal–organic framework , 2016 .

[41]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[42]  J. Duh,et al.  Aqueous sol–gel synthesized anatase TiO2 nanoplates with high-rate capabilities for lithium-ion and sodium-ion batteries , 2016 .

[43]  Yongchang Liu,et al.  MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. , 2016, Nano letters.

[44]  B. Chowdari,et al.  RGO/Stibnite Nanocomposite as a Dual Anode for Lithium and Sodium Ion Batteries , 2016 .

[45]  Byung Hoon Kim,et al.  Crumpled graphene paper for high power sodium battery anode , 2016 .

[46]  Quan-hong Yang,et al.  Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries , 2016 .

[47]  S. Ramakrishna,et al.  Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries , 2016 .

[48]  Lei Zhang,et al.  Free‐Standing Nitrogen‐Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium‐Ion Batteries with Ultralong Cycle Life and Superior Rate Capability , 2016 .

[49]  Zhuo. Sun,et al.  Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries , 2016, Ionics.

[50]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[51]  Chris J. Pickard,et al.  Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries , 2016 .

[52]  Farzad Mashayek,et al.  Selective Ionic Transport Pathways in Phosphorene. , 2016, Nano letters.

[53]  Koichi Yamashita,et al.  Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface , 2016 .

[54]  M. Hayashi,et al.  In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode , 2016, Scientific Reports.

[55]  Ji-Hoon Jang,et al.  Cross‐Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium‐Ion Batteries , 2016 .

[56]  Feiyu Kang,et al.  Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage , 2016 .

[57]  Y. Bando,et al.  Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. , 2016, Nano letters.

[58]  L. Monconduit,et al.  Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries , 2016 .

[59]  Dane Morgan,et al.  Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes. , 2016, Journal of the American Chemical Society.

[60]  Lin Gu,et al.  Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. , 2016, Nano letters.

[61]  Zhian Zhang,et al.  Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries. , 2016, Chemistry.

[62]  L. Luo,et al.  Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity , 2016 .

[63]  Yang-Tse Cheng,et al.  Voltage hysteresis of lithium ion batteries caused by mechanical stress. , 2016, Physical chemistry chemical physics : PCCP.

[64]  Shuling Liu,et al.  Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries , 2016 .

[65]  Wenwen Deng,et al.  Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. , 2016, Small.

[66]  A. J. Morris,et al.  Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy , 2016, Journal of the American Chemical Society.

[67]  Yuliang Cao,et al.  Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. , 2016, ACS applied materials & interfaces.

[68]  Yan Yu,et al.  Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. , 2015, Small.

[69]  Ya‐Xia Yin,et al.  Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores , 2015 .

[70]  Tao Qian,et al.  A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen‐Doped Carbon Sheets for Efficient Sodium Ion Batteries , 2015, Advanced materials.

[71]  Jun Liu,et al.  Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries , 2015 .

[72]  Yafei Li,et al.  A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries , 2015 .

[73]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[74]  Huisheng Peng,et al.  Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. , 2015, ACS nano.

[75]  Yeqian Ge,et al.  Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries , 2015 .

[76]  Yongchang Liu,et al.  Tin Nanodots Encapsulated in Porous Nitrogen‐Doped Carbon Nanofibers as a Free‐Standing Anode for Advanced Sodium‐Ion Batteries , 2015, Advanced materials.

[77]  J. Goodenough Energy storage materials: A perspective , 2015 .

[78]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[79]  Jiaqiang Huang,et al.  In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe 3 O 4 nanocrystal/carbon nanofiber composite electrodes , 2015 .

[80]  Yong-Sheng Hu,et al.  Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode , 2015, Advanced materials.

[81]  Kangli Wang,et al.  Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries , 2015 .

[82]  J. Liang,et al.  Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[83]  Huakun Liu,et al.  Cobalt phosphide as a new anode material for sodium storage , 2015 .

[84]  J. Carrasco,et al.  Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers , 2015 .

[85]  Xin-bo Zhang,et al.  Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries , 2015 .

[86]  Haihui Wang,et al.  Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. , 2015, Chemical communications.

[87]  Yanguang Li,et al.  Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries , 2015 .

[88]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[89]  Liping Wang,et al.  Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS₂. , 2015, ACS nano.

[90]  C. B. Carter,et al.  Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony. , 2015, Nano letters.

[91]  Hui Zhu,et al.  Humic acid as promising organic anodes for lithium/sodium ion batteries. , 2015, Chemical communications.

[92]  Huakun Liu,et al.  Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery , 2015 .

[93]  Jia-ling Wang,et al.  A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries , 2015 .

[94]  Dong‐Won Kim,et al.  Carbon-Coated Li4Ti5O12 as Anode Material for Sodium-Ion Batteries. , 2015, Journal of Nanoscience and Nanotechnology.

[95]  Xiulin Fan,et al.  Superior Stable Self‐Healing SnP3 Anode for Sodium‐Ion Batteries , 2015 .

[96]  Lin Gu,et al.  Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries , 2015 .

[97]  Hong Li,et al.  Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries , 2015, Science Advances.

[98]  K. Kang,et al.  Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material , 2015 .

[99]  M. Ge,et al.  SnO2 coated carbon cloth with surface modification as Na-ion battery anode , 2015 .

[100]  M. Doeff,et al.  Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. , 2015, Nano letters.

[101]  Lifang Jiao,et al.  Update on anode materials for Na-ion batteries , 2015 .

[102]  Xiaobo Ji,et al.  One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[103]  Yunhui Huang,et al.  Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery , 2015 .

[104]  S. Dou,et al.  Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries , 2015 .

[105]  Xiaobo Ji,et al.  Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries , 2015 .

[106]  Jiaqiang Huang,et al.  Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics , 2015 .

[107]  A. Manthiram,et al.  Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries. , 2015, Chemical communications.

[108]  Y. Meng,et al.  Investigating the Energy Storage Mechanism of SnS2-rGO Composite Anode for Advanced Na-Ion Batteries , 2015 .

[109]  Yan‐Bing He,et al.  Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li4Ti5O12 Spheres of Densely Packed Nanocrystallites , 2015 .

[110]  Jiaqiang Huang,et al.  Ultrafine Amorphous SnOx Embedded in Carbon Nanofiber/Carbon Nanotube Composites for Li‐Ion and Na‐Ion Batteries , 2015 .

[111]  Tae-Hee Kim,et al.  Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[112]  N. Birbilis,et al.  High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights , 2015 .

[113]  Huanlei Wang,et al.  High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation , 2015 .

[114]  Jun Wang,et al.  Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography , 2015, Nature Communications.

[115]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[116]  Yong‐Sheng Hu,et al.  A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries , 2015 .

[117]  Jianbo Wang,et al.  In situ observation of the sodiation process in CuO nanowires. , 2015, Chemical communications.

[118]  Xiaobo Ji,et al.  Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries , 2015 .

[119]  Jiaqiang Huang,et al.  Electrospun Carbon Nanofibers with in Situ Encapsulated Co₃O₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. , 2015, ACS applied materials & interfaces.

[120]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[121]  Wei Chen,et al.  Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries , 2015 .

[122]  O. Malyi,et al.  Phosphorene as an anode material for Na-ion batteries: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[123]  Zhichuan J. Xu,et al.  Reserving Interior Void Space for Volume Change Accommodation: An Example of Cable‐Like MWNTs@SnO2@C Composite for Superior Lithium and Sodium Storage , 2015, Advanced science.

[124]  Jeng‐Kuei Chang,et al.  Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries , 2015 .

[125]  Yongsong Luo,et al.  Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. , 2015, ACS applied materials & interfaces.

[126]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[127]  Arumugam Manthiram,et al.  High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries , 2015 .

[128]  E. D. Jackson,et al.  Electrochemical performance of electrodeposited Zn4Sb3 films for sodium-ion secondary battery anodes. , 2015, ACS applied materials & interfaces.

[129]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[130]  Xiaodong Chen,et al.  Renewable‐Juglone‐Based High‐Performance Sodium‐Ion Batteries , 2015, Advanced materials.

[131]  Xiulin Fan,et al.  Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries , 2015 .

[132]  L. Niu,et al.  Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries , 2015 .

[133]  Leigang Xue,et al.  Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries , 2015 .

[134]  Masahiro Shimizu,et al.  Nb-doped rutile TiO₂: a potential anode material for Na-ion battery. , 2015, ACS applied materials & interfaces.

[135]  Se Youn Cho,et al.  Ultra-Thin Hollow Carbon Nanospheres for Pseudocapacitive Sodium-Ion Storage , 2015 .

[136]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[137]  Tao Gao,et al.  Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. , 2015, ACS nano.

[138]  Huawei Song,et al.  Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability , 2015 .

[139]  Mietek Jaroniec,et al.  High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams , 2015, Advanced materials.

[140]  Mohammad Asadi,et al.  High‐Quality Black Phosphorus Atomic Layers by Liquid‐Phase Exfoliation , 2015, Advanced materials.

[141]  S. Dou,et al.  Bismuth: A new anode for the Na-ion battery , 2015 .

[142]  Jun Chen,et al.  3D Porous γ‐Fe2O3@C Nanocomposite as High‐Performance Anode Material of Na‐Ion Batteries , 2015 .

[143]  Haiyan Lu,et al.  Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries , 2015 .

[144]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[145]  Yong Lei,et al.  Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[146]  Marc D. Walter,et al.  Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries , 2015, Scientific Reports.

[147]  S. Dou,et al.  A new, cheap, and productive FeP anode material for sodium-ion batteries. , 2015, Chemical communications.

[148]  Hongsen Li,et al.  High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries. , 2015, Nanoscale.

[149]  Yitai Qian,et al.  Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries , 2015 .

[150]  Yan Zhang,et al.  Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries , 2015 .

[151]  G. Cui,et al.  Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage , 2015 .

[152]  Marc D. Walter,et al.  Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. , 2015, Nanoscale.

[153]  Wei Chen,et al.  Deflated Carbon Nanospheres Encapsulating Tin Cores Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries , 2015 .

[154]  Jun Chen,et al.  The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. , 2015, Chemical communications.

[155]  Charles E. Johnson,et al.  The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies , 2014 .

[156]  Jun Chen,et al.  MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. , 2014, Angewandte Chemie.

[157]  Xiaobo Ji,et al.  An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries , 2014 .

[158]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[159]  Mi Yan,et al.  Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. , 2014, ACS applied materials & interfaces.

[160]  Jiaqiang Huang,et al.  Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries. , 2014, ACS applied materials & interfaces.

[161]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[162]  Jiaqiang Huang,et al.  Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities , 2014 .

[163]  J. Bao,et al.  An SbOx/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries , 2014 .

[164]  Zhen Zhou,et al.  Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. , 2014, Chemical communications.

[165]  Yongsong Luo,et al.  Cost-effective CuO nanotube electrodes for energy storage and non-enzymatic glucose detection , 2014 .

[166]  Jiaqiang Huang,et al.  Co3O4/porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries , 2014 .

[167]  Kai Cui,et al.  Activation with Li enables facile sodium storage in germanium. , 2014, Nano letters.

[168]  Chengyang Wang,et al.  Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries , 2014 .

[169]  Y. Kang,et al.  Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. , 2014, Chemical communications.

[170]  Haiyan Lu,et al.  A tin(II) sulfide–carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries , 2014 .

[171]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[172]  A. Heller,et al.  Tin-germanium alloys as anode materials for sodium-ion batteries. , 2014, ACS applied materials & interfaces.

[173]  Xiaobo Ji,et al.  Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. , 2014, ACS applied materials & interfaces.

[174]  D. Brandell,et al.  Benzenediacrylates as organic battery electrode materials: Na versus Li , 2014 .

[175]  Aram Choi,et al.  4,4′-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries , 2014 .

[176]  Zaiping Guo,et al.  SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries , 2014, Nano Research.

[177]  Haoshen Zhou,et al.  Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries , 2014 .

[178]  K. Edström,et al.  Stability of organic Na-ion battery electrode materials: The case of disodium pyromellitic diimidate , 2014 .

[179]  Ali Coskun,et al.  An Aqueous Sodium Ion Hybrid Battery Incorporating an Organic Compound and a Prussian Blue Derivative , 2014 .

[180]  Wei Zhang,et al.  Biomass derived hard carbon used as a high performance anode material for sodium ion batteries , 2014 .

[181]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[182]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[183]  Zaiping Guo,et al.  Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. , 2014, ACS nano.

[184]  S. Gopukumar,et al.  rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling , 2014 .

[185]  M. Hayashi,et al.  Sodium-Ion Insertion/Extraction Properties of Sn-Co Anodes and Na Pre-Doped Sn-Co Anodes , 2014 .

[186]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[187]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[188]  Jun Chen,et al.  All organic sodium-ion batteries with Na₄C₈H₂O₆. , 2014, Angewandte Chemie.

[189]  Gang Su,et al.  Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance , 2014, Scientific Reports.

[190]  S. Dou,et al.  SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. , 2014, Chemistry, an Asian journal.

[191]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[192]  S. Dou,et al.  Sn4+xP3 @ Amorphous Sn‐P Composites as Anodes for Sodium‐Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability , 2014, Advanced materials.

[193]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[194]  Guoxiu Wang,et al.  Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery , 2014 .

[195]  M. Armand,et al.  Polymeric Schiff bases as low-voltage redox centers for sodium-ion batteries. , 2014, Angewandte Chemie.

[196]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[197]  F. Kang,et al.  Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films , 2014 .

[198]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[199]  Biao Zhang,et al.  Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities , 2014 .

[200]  Clement Bommier,et al.  Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures. , 2014, Chemical communications.

[201]  Charles E. Johnson,et al.  The reaction mechanism of FeSb(2) as anode for sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[202]  Md. Mokhlesur Rahman,et al.  Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. , 2014, Chemical communications.

[203]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[204]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[205]  Y. Meng,et al.  Probing the Mechanism of Sodium Ion Insertion into Copper Antimony Cu2Sb Anodes , 2014 .

[206]  Shuang Yuan,et al.  Engraving Copper Foil to Give Large‐Scale Binder‐Free Porous CuO Arrays for a High‐Performance Sodium‐Ion Battery Anode , 2014, Advanced materials.

[207]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[208]  Chunsheng Wang,et al.  Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes , 2014 .

[209]  Yongyao Xia,et al.  Polyimide as anode electrode material for rechargeable sodium batteries , 2014 .

[210]  Xinping Ai,et al.  Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. , 2014, Nano letters.

[211]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[212]  Guoxiu Wang,et al.  Hierarchical mesoporous SnO microspheres as high capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[213]  F. Kang,et al.  Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst , 2014 .

[214]  Biao Zhang,et al.  In situ grown graphitic carbon/Fe2O3/carbon nanofiber composites for high performance freestanding anodes in Li-ion batteries , 2014 .

[215]  Marc D. Walter,et al.  Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. , 2014, Nano letters.

[216]  J. Xie,et al.  Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route , 2014 .

[217]  Do-Hwan Nam,et al.  Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries , 2014 .

[218]  Jun Chen,et al.  Porous CuO nanowires as the anode of rechargeable Na-ion batteries , 2014, Nano Research.

[219]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[220]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[221]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[222]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[223]  Liangbing Hu,et al.  Atomic-layer-deposition oxide nanoglue for sodium ion batteries. , 2014, Nano letters.

[224]  Haoshen Zhou,et al.  Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. , 2014, Chemical communications.

[225]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[226]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[227]  Mietek Jaroniec,et al.  AlSb thin films as negative electrodes for Li-ion and Na-ion batteries , 2013 .

[228]  Jing Ning,et al.  High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. , 2013, Nano letters.

[229]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[230]  G. F. Ortiz,et al.  Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries , 2013 .

[231]  Yu‐Guo Guo,et al.  Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage , 2013 .

[232]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[233]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[234]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[235]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[236]  Raymond R. Unocic,et al.  Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries , 2013 .

[237]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[238]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[239]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[240]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[241]  Haosheng Zhou New energy storage devices for post lithium-ion batteries , 2013 .

[242]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[243]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[244]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[245]  L. Stievano,et al.  Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries , 2013 .

[246]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[247]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[248]  G. Veith,et al.  Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system. , 2013, Physical chemistry chemical physics : PCCP.

[249]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[250]  A. Manthiram,et al.  High‐Performance MxSb–Al2O3–C (M=Fe, Ni, and Cu) Nanocomposite‐Alloy Anodes for Sodium‐Ion Batteries , 2013 .

[251]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[252]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[253]  Lixia Yuan,et al.  Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance , 2013 .

[254]  Guoxiu Wang,et al.  SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries , 2013 .

[255]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[256]  H. Ahn,et al.  SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. , 2013, Chemical communications.

[257]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[258]  Yang-Kook Sun,et al.  Titanium‐Based Anode Materials for Safe Lithium‐Ion Batteries , 2013 .

[259]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[260]  Biao Zhang,et al.  Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. , 2013, Nanoscale.

[261]  Gabriel M. Veith,et al.  Cu2Sb thin films as anode for Na-ion batteries , 2013 .

[262]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[263]  Wei Lv,et al.  Gassing in Li4Ti5O12-based batteries and its remedy , 2012, Scientific Reports.

[264]  Yiu-Wing Mai,et al.  Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles , 2012 .

[265]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[266]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[267]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[268]  M. Armand,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[269]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[270]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[271]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[272]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[273]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[274]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[275]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[276]  Y. Mai,et al.  Urchin-like Li4Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries , 2012 .

[277]  Yunhui Huang,et al.  Nitrogen‐Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability , 2012, Advanced materials.

[278]  Byung Gon Kim,et al.  Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. , 2012, Nano letters.

[279]  Philippe Poggi,et al.  Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry , 2012 .

[280]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[281]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[282]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[283]  Seung M. Oh,et al.  Micrometer‐Sized, Nanoporous, High‐Volumetric‐Capacity LiMn0.85Fe0.15PO4 Cathode Material for Rechargeable Lithium‐Ion Batteries , 2011, Advanced materials.

[284]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[285]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[286]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[287]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[288]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[289]  Andreas Nyman,et al.  Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations , 2010 .

[290]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[291]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[292]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[293]  Kristin A. Persson,et al.  First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium , 2008 .

[294]  Liquan Chen,et al.  Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency , 2008 .

[295]  M. Armand,et al.  Building better batteries , 2008, Nature.

[296]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[297]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[298]  Kimon P. Valavanis,et al.  Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy , 2007 .

[299]  I. Manna,et al.  Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling , 2007, Nanoscale Research Letters.

[300]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[301]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[302]  Andrew F. Burke,et al.  Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles , 2007, Proceedings of the IEEE.

[303]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[304]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[305]  J. Dahn,et al.  Combinatorial Study of Sn1 − x Co x ( 0 < x < 0.6 ) and [ Sn0.55Co0.45 ] 1 − y C y ( 0 < y < 0.5 ) Alloy Negative Electrode Materials for Li-Ion Batteries , 2006 .

[306]  Min Guo,et al.  The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films , 2005 .

[307]  T. Horiba,et al.  Applications of high power density lithium ion batteries , 2005 .

[308]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[309]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[310]  J. Tirado,et al.  Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C , 2002 .

[311]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[312]  Ricardo Alcántara,et al.  Carbon black: a promising electrode material for sodium-ion batteries , 2001 .

[313]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[314]  E. Spooner,et al.  Grid Power Quality with Variable-Speed Wind Turbines , 2001, IEEE Power Engineering Review.

[315]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[316]  K. Yanagisawa,et al.  Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination , 1999 .

[317]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[318]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[319]  Jeff Dahn,et al.  Lithium‐Ion Cells with Aqueous Electrolytes , 1995 .

[320]  M. Endo,et al.  A Mechanism of Lithium Storage in Disordered Carbons , 1994, Science.

[321]  M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[322]  Ken R. Smith Fuel Combustion, Air Pollution Exposure, and Health: The Situation in Developing Countries , 1993 .

[323]  A. Pelton,et al.  The Na-Sb (sodium-antimony) system , 1993 .

[324]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[325]  Y. Takeda,et al.  Carbon as negative electrodes in lithium secondary cells , 1989 .

[326]  N. A. Hampson,et al.  A review of cells based on lithium negative electrodes (anodes) , 1984 .

[327]  J. Tarascon,et al.  Correlation Between Microstructure and Na Storage Behavior in Hard Carbon , 2016 .

[328]  Yong‐Sheng Hu,et al.  A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries , 2016 .

[329]  Yong-Sheng Hu,et al.  Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries , 2016 .

[330]  Jun Lu,et al.  Ultrafast and Highly Reversible Sodium Storage in Zinc‐Antimony Intermetallic Nanomaterials , 2016 .

[331]  Xiaoyu Li,et al.  Nanostructured Antimony/carbon Composite Fibers as Anode Material for Lithium-ion Battery , 2015 .

[332]  J. Xie,et al.  Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries , 2015 .

[333]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[334]  Ning Zhang,et al.  Ultrasmall Sn Nanoparticles Embedded in Carbon as High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[335]  J. Xie,et al.  Few‐Layered SnS2 on Few‐Layered Reduced Graphene Oxide as Na‐Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability , 2015 .

[336]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[337]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[338]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[339]  Ting Lu,et al.  Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries , 2014 .

[340]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[341]  T. Hatchard,et al.  Evaluation of Electrolyte Salts and Solvents for Na-Ion Batteries in Symmetric Cells , 2014 .

[342]  Yuliang Cao,et al.  Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries , 2013 .

[343]  L. Ellis,et al.  Sodium Insertion into Tin Cobalt Carbon Active/Inactive Nanocomposite , 2013 .

[344]  Xin-bo Zhang,et al.  Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. , 2013, ChemSusChem.

[345]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[346]  Xinping Ai,et al.  High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion BatterieslSUPg†l/SUPg , 2013 .

[347]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[348]  G. Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[349]  Xueping Gao,et al.  A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes , 2004 .

[350]  E. Zhecheva,et al.  Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells , 2000 .

[351]  Zheng,et al.  Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. , 1995, Physical review. B, Condensed matter.

[352]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[353]  J. Driscoll,et al.  A High Energy Density Lithium/Dichloroisocyanuric Acid Battery System , 1969 .