Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases

[1]  R. J. Gallagher,et al.  The Glass Furnace Combustion and Melting User Research Facility , 2008 .

[2]  S. Akbar Ceramic Sensors for the Glass Industry , 2008 .

[3]  H. Kubler Oxygen Sensor for Control of Wood Combustion: A Review , 2007 .

[4]  R. Moos,et al.  Solid Electrolyte Hydrocarbon Gas Sensor Using Zeolite as the Sensitive Phase , 2006 .

[5]  Xiaogan Li,et al.  Planar Mixed-Potential CO Sensor Utilizing Novel ( Ba0.4La0.6 ) 2In2O5.6 and ITO Interface , 2006 .

[6]  Nianqiang Wu,et al.  Porous CuO–ZnO nanocomposite for sensing electrode of high-temperature CO solid-state electrochemical sensor , 2005 .

[7]  S. Licoccia,et al.  Planar electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes , 2005 .

[8]  Norio Miura,et al.  Detection of combustible hydrogen-containing gases by using impedancemetric zirconia-based water-vapor sensor , 2005 .

[9]  Nianqiang Wu,et al.  Impedance-metric Pt/YSZ/Au–Ga2O3 sensor for CO detection at high temperature , 2005 .

[10]  Peter C. Hauser,et al.  Amperometric sensing in the gas-phase , 2005 .

[11]  Ralf Moos,et al.  A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .

[12]  T. Inaba,et al.  Characteristics of an HC sensor using a Pr6O11 electrode , 2005 .

[13]  T. Ishihara,et al.  Amperometric hydrocarbon sensor using La(Sr)Ga(Fe)O3 solid electrolyte for monitoring in exhaust gas , 2005 .

[14]  S. Cordiner,et al.  Planar non-nernstian electrochemical sensors: field test in the exhaust of a spark ignition engine , 2005 .

[15]  Girish M. Kale,et al.  Novel nanosized ITO electrode for mixed potential gas sensor , 2005 .

[16]  Jens Zosel,et al.  Response behavior of perovskites and Au/oxide composites as HC-electrodes in different combustibles , 2004 .

[17]  T. Ishihara,et al.  An Amperometric Solid-State Gas Sensor Using a LaGaO3-Based Perovskite Oxide Electrolyte for Detecting Hydrocarbon in Exhaust Gas. A Bimetallic Anode for Improving Sensitivity at Low Temperature , 2004 .

[18]  J. Zosel,et al.  Electrochemical solid electrolyte gas sensors — hydrocarbon and NOx analysis in exhaust gases , 2004 .

[19]  Maria Luisa Grilli,et al.  Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes , 2004 .

[20]  W. Sitte,et al.  Electrochemical device for the precise adjustment of oxygen partial pressures in a gas stream , 2004 .

[21]  T. Ishihara,et al.  Amperometric Solid-State Gas Sensor Using LaGaO3 Based Perovskite Oxide Electrolyte for Detecting Hydrocarbon in Exhaust Gas II. Improvement of Inactive Electrode Performance , 2004 .

[22]  Maria Luisa Grilli,et al.  Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes Is It Always Mixed Potential , 2004 .

[23]  Jens Zosel,et al.  Selectivity of HC-sensitive electrode materials for mixed potential gas sensors , 2004 .

[24]  C. Pijolat,et al.  Oxygen and carbon monoxide role on the electrical response of a non-Nernstian potentiometric gas sensor; proposition of a model , 2004 .

[25]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[26]  Sheikh A. Akbar,et al.  Ceramic electrolytes and electrochemical sensors , 2003 .

[27]  R. Mukundan,et al.  Mixed Potential Hydrocarbon Sensors based on a YSZ Electrolyte and Oxide Electrodes , 2003 .

[28]  S. Midlam-Mohler,et al.  Ceramic-based chemical sensors, probes and field-tests in automobile engines , 2003 .

[29]  T. Ishihara,et al.  Solid State Amperometric Hydrocarbon Sensor for Monitoring Exhaust Gas Using Oxygen Pumping Current , 2003 .

[30]  E. Traversa,et al.  Study of YSZ-Based Electrochemical Sensors with WO 3 Electrodes in NO 2 and CO Environments , 2003 .

[31]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[32]  D. R. Brown,et al.  Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes , 2002 .

[33]  E. Traversa,et al.  Study of YSZ-based electrochemical sensors with oxide electrodes for high temperature applications , 2002 .

[34]  Jacobus H. Visser,et al.  Development of ceramic mixed potential sensors for automotive application , 2002 .

[35]  S. Akbar,et al.  Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments , 2002 .

[36]  Ellen Ivers-Tiffée,et al.  Principles of solid state oxygen sensors for lean combustion gas control , 2001 .

[37]  Dae-Sik Lee,et al.  Environmental gas sensors , 2001 .

[38]  G. Lu,et al.  Sensing characteristics of a zirconia-based CO sensor made by thick-film lamination , 2001 .

[39]  D. Westphal,et al.  Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte , 2001 .

[40]  R. Mukundan,et al.  Solid‐State Electrochemical Sensors for Automotive Applications , 2001 .

[41]  W. Göpel,et al.  Multi-electrode zirconia electrolyte amperometric sensors , 2000 .

[42]  W. Göpel,et al.  Trends in the development of solid state amperometric and potentiometric high temperature sensors , 2000 .

[43]  Norio Miura,et al.  Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases , 2000 .

[44]  Rangachary Mukundan,et al.  Solid-state mixed potential gas sensors: theory, experiments and challenges , 2000 .

[45]  D. R. Brown,et al.  CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3−δ metal oxides , 2000 .

[46]  R. Glass,et al.  Hydrocarbon sensor for exhaust gas monitoring , 2000 .

[47]  Wolfgang Göpel,et al.  Tubular amperometric high-temperature sensors: simultaneous determination of oxygen, nitrogen oxides and combustible components , 2000 .

[48]  Eric L. Brosha,et al.  A mixed-potential sensor based on a Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} electrolyte and platinum and gold electrodes , 2000 .

[49]  M. Sano,et al.  High‐Temperature Hydrocarbon Sensors Based on a Stabilized Zirconia Electrolyte and Metal Oxide Electrodes , 1999 .

[50]  Takashi Hibino,et al.  Non‐Nernstian Behavior at Modified Au Electrodes for Hydrocarbon Gas Sensing , 1999 .

[51]  D. R. Brown,et al.  CERIA-ELECTROLYTE-BASED MIXED POTENTIAL SENSORS FOR THE DETECTION OF HYDROCARBONS AND CARBON MONOXIDE , 1999 .

[52]  N. Yamazoe,et al.  Potentiometric Gas Sensors for Oxidic Gases , 1998 .

[53]  U. Guth,et al.  A parallel analysis of oxygen and combustibles in solid electrolyte amperometric cells , 1998 .

[54]  Norio Miura,et al.  Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes , 1998 .

[55]  F. J. Dudek,et al.  Gas microsensors using cyclic voltammetry with a cermet electrochemical cell , 1997 .

[56]  Takashi Kawano,et al.  A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell , 1997 .

[57]  Wolfgang Göpel,et al.  Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts , 1996 .

[58]  U. Guth,et al.  Chemical modifications of au-electrodes on YSZ and their influence on the non-Nernstian behaviour , 1996 .

[59]  Ingemar Lundström,et al.  Approaches and mechanisms to solid state based sensing , 1996 .

[60]  R. Hartung,et al.  Modified Au/YSZ electrodes - preparation, characterization and electrode behaviour at higher temperatures , 1996 .

[61]  Junichiro Mizusaki,et al.  Detection of carbon monoxide by using zirconia oxygen sensor , 1995 .

[62]  T. Hibino,et al.  A hydrocarbon sensor using a high temperature-type proton conductor , 1994 .

[63]  V. Schüle,et al.  Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials , 1993 .

[64]  Takayuki Suzuki,et al.  Development of a thin-film oxygen sensor for combustion control of gas appliances , 1993 .

[65]  L. Montanaro,et al.  A new type of mixed potential sensor using a thick film of beta-alumina , 1993 .

[66]  T. Tan,et al.  High‐Temperature Carbon Monoxide Potentiometric Sensor , 1993 .

[67]  S. Akbar,et al.  Solid‐State Gas Sensors: A Review , 1992 .

[68]  Werner Weppner,et al.  Solid-state electrochemical gas sensors☆ , 1987 .

[69]  R. J. Huber,et al.  Solid State Chemical Sensors , 1985 .

[70]  A. Marzocchella,et al.  Assessment of gas‐fluidized beds mixing and hydrodynamics by zirconia sensors , 2006 .

[71]  E. Bartolomeo,et al.  YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test , 2005 .

[72]  S. Cordiner,et al.  Testing Planar Gas Sensors Based on Yttria-stabilized Zirconia with Oxide Electrodes in the Exhaust Gases of a Spark Ignition Engine , 2005 .

[73]  Maria Luisa Grilli,et al.  Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers , 2004 .

[74]  Rangachary Mukundan,et al.  Electrochemical Sensors for Energy and Transportation , 2004 .

[75]  Lester B. Lave,et al.  Evaluating automobile fuel/propulsion system technologies , 2003 .

[76]  Sébastien Candel,et al.  Combustion control and sensors: a review , 2002 .

[77]  R. Mukundan,et al.  Role of heterogeneous catalysis in the gas-sensing selectivity of high-temperature mixed potential sensors , 2002 .

[78]  M. Sano,et al.  Zirconia-Based Potentiometric Sensors Using Metal Oxide Electrodes for Detection of Hydrocarbons , 2001 .

[79]  Shuqiang Wang,et al.  Nonideal Electromotive Force of Zirconia Sensors for Unsaturated Hydrocarbon Gases , 1999 .