Computational engineering analysis with the new-generation space–time methods

This is an overview of the new directions we have taken the space–time (ST) methods in bringing solution and analysis to different classes of computationally challenging engineering problems. The classes of problems we have focused on include bio-inspired flapping-wing aerodynamics, wind-turbine aerodynamics, and cardiovascular fluid mechanics. The new directions for the ST methods include the variational multiscale version of the Deforming-Spatial-Domain/Stabilized ST method, using NURBS basis functions in temporal representation of the unknown variables and motion of the solid surfaces and fluid meshes, ST techniques with continuous representation in time, and ST interface-tracking with topology change. We describe the new directions and present examples of the challenging problems solved.

[1]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[2]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[3]  T. Tezduyar,et al.  Influencing factors in image‐based fluid–structure interaction computation of cerebral aneurysms , 2011 .

[4]  Tayfun E. Tezduyar,et al.  Fluid-object interactions in interior ballistics , 2000 .

[5]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[6]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[7]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[8]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[9]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[10]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[11]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[12]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[13]  Tayfun E. Tezduyar,et al.  Stabilized formulations for incompressible flows with thermal coupling , 2008 .

[14]  E. Oñate,et al.  FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers , 2006 .

[15]  Tayfun E. Tezduyar,et al.  Space–time SUPG formulation of the shallow‐water equations , 2010 .

[16]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[17]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[18]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Tayfun E. Tezduyar,et al.  Aerodynamic Interactions Between Parachute Canopies , 2003 .

[21]  Roger Ohayon,et al.  Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation , 2012 .

[22]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[23]  G. P. Wren,et al.  Parallel Implementations of a Finite Element Formulation for Fluid-Structure Interactions in Interior Flows , 1997, Parallel Comput..

[24]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[25]  Alvaro L. G. A. Coutinho,et al.  Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices , 2006 .

[26]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[27]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[28]  Tayfun E. Tezduyar,et al.  Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques , 2007 .

[29]  Guirong Liu,et al.  A moving-mesh gradient smoothing method for compressible CFD problems , 2013 .

[30]  G. Liu,et al.  Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves , 2012 .

[31]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[32]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[33]  Tayfun E. Tezduyar,et al.  Notes on the stabilized space-time finite-element formulation of unsteady incompressible flows , 1992 .

[34]  Eugenio Oñate,et al.  A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER , 2013 .

[35]  Tayfun E. Tezduyar,et al.  A Numerical model based on the mixed interface‐tracking/interface‐capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces , 2007 .

[36]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[37]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[38]  Alessandro Corsini,et al.  Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique , 2012 .

[39]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[40]  Tayfun E. Tezduyar,et al.  Parallel finite element simulation of large ram-air parachutes , 1997 .

[41]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[42]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[43]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[44]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[45]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[46]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[47]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[48]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[49]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[50]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[51]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[52]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[53]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[54]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[55]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[56]  T. Tezduyar,et al.  Computation of inviscid compressible flows with the V‐SGS stabilization and YZβ shock‐capturing , 2007 .

[57]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[58]  T. Tezduyar,et al.  Parallel finite element computation of free-surface flows , 1999 .

[59]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modelling of parachute soft‐landing dynamics , 2005 .

[60]  Murat Manguoglu,et al.  A parallel sparse algorithm targeting arterial fluid mechanics computations , 2011 .

[61]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[62]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[63]  Tayfun E. Tezduyar,et al.  Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems , 1986 .

[64]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[65]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[66]  Tayfun E. Tezduyar,et al.  Space–time SUPG finite element computation of shallow-water flows with moving shorelines , 2011 .

[67]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[68]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[69]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[70]  Tayfun E. Tezduyar,et al.  Methods for 3D computation of fluid-object interactions in spatially periodic flows , 2001 .

[71]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[72]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[73]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[74]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[75]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[76]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[77]  Pablo A. Kler,et al.  SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems , 2013 .

[78]  Michael L. Accorsi,et al.  Fluid-Structure Interactions of a Round Parachute: Modeling and Simulation Techniques , 2001 .

[79]  Murat Manguoglu,et al.  Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement , 2011 .

[80]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[81]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[82]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[83]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[84]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[85]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[86]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[87]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[88]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[89]  E. Oñate,et al.  A coupled PFEM–Eulerian approach for the solution of porous FSI problems , 2012, Computational Mechanics.

[90]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[91]  Richard Benney,et al.  Computational methods for modeling parachute systems , 2003, Comput. Sci. Eng..

[92]  Tayfun E. Tezduyar,et al.  Parallel finite element computations in fluid mechanics , 2006 .

[93]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[94]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[95]  M. R. Lewis,et al.  A finite-element/boundary-element method for large-displacement fluid-structure interaction , 2012 .

[96]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[97]  Tayfun E. Tezduyar,et al.  Stabilization Parameters and Smagorinsky Turbulence Model , 2003 .

[98]  S. Yoshimura,et al.  Parallel BDD-based monolithic approach for acoustic fluid-structure interaction , 2012 .

[99]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[100]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[101]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[102]  Alvaro L. G. A. Coutinho,et al.  Compressible flow SUPG parameters computed from element matrices , 2005 .

[103]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[104]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[105]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[106]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[107]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows involving moving boundaries and interfaces☆ , 1993 .

[108]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[109]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[110]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[111]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[112]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[113]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[114]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[115]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[116]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[117]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[118]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[119]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[120]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[121]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[122]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[123]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[124]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[125]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[126]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[127]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[128]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[129]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[130]  Genki Yagawa,et al.  Accurate fluid-structure interaction computations using elements without mid-side nodes , 2011 .

[131]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[132]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[133]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[134]  Tayfun E. Tezduyar,et al.  The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft , 2001 .

[135]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[136]  Tayfun E. Tezduyar,et al.  Enhanced-discretization Selective Stabilization Procedure (EDSSP) , 2006 .

[137]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[138]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[139]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[140]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[141]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[142]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[143]  Tayfun E. Tezduyar,et al.  Simulation of flow problems with moving mechanical components, fluid–structure interactions and two‐fluid interfaces , 1997 .

[144]  Tayfun E. Tezduyar,et al.  Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components , 2001 .

[145]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[146]  S. Mittal,et al.  A finite element study of incompressible flows past oscillating cylinders and aerofoils , 1992 .

[147]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[148]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[149]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[150]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[151]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[152]  Tayfun E. Tezduyar,et al.  Bringing Them Down Safely , 2012 .

[153]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[154]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[155]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[156]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[157]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[158]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[159]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[160]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[161]  V. Kalro,et al.  Parallel Computational Methods for 3D Simulation of a Parafoil with Prescribed Shape Changes , 1997, Parallel Comput..

[162]  Tayfun E. Tezduyar,et al.  Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations , 1986 .

[163]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[164]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[165]  Alessandro Corsini,et al.  A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms , 2009 .

[166]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[167]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows between moving components , 1995 .

[168]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of inviscid supersonic flows with YZβ shock-Capturing , 2007 .

[169]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[170]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[171]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[172]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[173]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[174]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[175]  T. Wick Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations , 2013 .

[176]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[177]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .