On the numerical solution of nonlinear eigenvalue problems

We consider the numerical solution of the nonlinear eigenvalue problemA(λ)x=0, where the matrixA(λ) is dependent on the eigenvalue parameter λ nonlinearly. Some new methods (the BDS methods) are presented, together with the analysis of the condition of the methods. Numerical examples comparing the methods are given.ZusammenfassungWir betrachten die numerische Lösung des nichtlinearen EigenwertproblemsA(λ)x=0, wobei die MatrixA(λ) in nichtlinearer Weise vom Eigenwertparameter λ abhängt. Einige neue Methoden (die BDS Methoden) werden zusammen mit einer Untersuchung der Bedingungen dieser Methoden vorgestellt. Numerische Beispiele, welche diese Methoden vergleichen, werden präsentiert.

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  V. Kublanovskaya,et al.  Spectral problems for matrix pencils. Methods and algorithms. I , 1988 .

[3]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[4]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  P. Lancaster A generalised rayleigh quotient iteration for lambda-matrices , 1961 .

[7]  Reinhard Wobst,et al.  The generalized eigenvalue problem and acoustic surface wave computations , 1987, Computing.

[8]  James Hardy Wilkinson,et al.  Realistic error bounds for a simple eigenvalue and its associated eigenvector , 1980 .

[9]  Peter Lancaster,et al.  A Review of Numerical Methods for Eigenvalue Problems Nonlinear in the Parameter , 1977 .

[10]  A. Griewank,et al.  Characterization and Computation of Generalized Turning Points , 1984 .

[11]  V. Kublanovskaya,et al.  Spectral problems for matrix pencils. Methods and algorithms. III. , 1988 .

[12]  P. Lancaster Some applications of the Newton—Raphson method to non-linear matrix problems , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  Raphael T. Haftka,et al.  Recent developments in structural sensitivity analysis , 1989 .

[14]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[15]  L. S. Jennings,et al.  Generalized Eigenvalue Problems for Rectangular Matrices , 1977 .

[16]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[17]  Eric King-Wah Chu,et al.  Bordered Matrices, Singular Systems, and Ergodic Markov Chains , 1990, SIAM J. Sci. Comput..

[18]  A. Spence,et al.  Deferred correction for the integral equation eigenvalue problem , 1981, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[19]  Peter Lancaster,et al.  Algorithms for lambda-matrices , 1964 .

[20]  W. Govaerts,et al.  Matrices with rank deficiency two in eigenvalue problems and dynamical systems , 1994 .

[21]  King-wah Eric Chu Deferred correction for the ordinary differential equation eigenvalue problem , 1982, Bulletin of the Australian Mathematical Society.

[22]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .