Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields

We study the Hausdorff dimension of the image and graph set, hitting probabilities, transience, and other sample path properties of certain isotropic operator-self-similar Gaussian random fields $X = \{X(t),\ t \in {\bf R}^N\}$ with stationary increments, including multiparameter operator fractional Brownian motion. Our results show that if $X({\bf 1})$, where $ {\bf 1} =(1, 0, \ldots, 0) \in {\bf R}^N$, is full, then many of such sample path properties are completely determined by the real parts of the eigenvalues of the self-similarity exponent~D.

[1]  Paul Erdös,et al.  Some Problems on Random Walk in Space , 1951 .

[2]  Frank Spitzer,et al.  Some theorems concerning 2-dimensional Brownian motion , 1958 .

[3]  J. Lamperti Semi-stable stochastic processes , 1962 .

[4]  A. Garsia Continuity properties of Gaussian processes with multidimensional time parameter , 1972 .

[5]  Some Local Properties of Gaussian Vector Fields , 1978 .

[6]  Operator-stable laws , 1981 .

[7]  V. K. Rohatgi,et al.  Operator self similar stochastic processes in Rd , 1981 .

[8]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[9]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[10]  W. Vervaat Sample Path Properties of Self-Similar Processes with Stationary Increments , 1985 .

[11]  J. Kahane Some Random Series of Functions , 1985 .

[12]  L. D. Pitt,et al.  Local nondeterminism and Hausdorff dimension , 1986 .

[13]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[14]  Ken-iti Sato,et al.  Self-similar processes with independent increments , 1991 .

[15]  Endre Csáki,et al.  Inequalities for Increments of Stochastic Processes and Moduli of Continuity , 1992 .

[16]  J. Mason,et al.  Operator-limit distributions in probability theory , 1993 .

[17]  M. Maejima,et al.  Operator-self-similar stable processes , 1994 .

[18]  Dimension Results for Gaussian Vector Fields and Index-$\alpha$ Stable Fields , 1995 .

[19]  Michel Talagrand,et al.  Hausdorff Measure of Trajectories of Multiparameter Fractional Brownian Motion , 1995 .

[20]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[21]  Yimin Xiao Packing measure of the sample paths of fractional Brownian motion , 1996 .

[22]  Limit theorems related to a class of operator-self-similar processes , 1996 .

[23]  Yimin Xiao Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields , 1997 .

[24]  Yimin Xiao Hausdorff measure of the graph of fractional Brownian motion , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  Yimin Xiao Asymptotic Results for Self-Similar Markov Processes , 1998 .

[26]  Multiple points of trajectories of multiparameter fractional Brownian motion , 1998 .

[27]  Yimin Xiao Hitting probabilities and polar sets for fractional brownian motion , 1999 .