暂无分享,去创建一个
[1] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[2] Ke Chen,et al. A constant factor approximation algorithm for k-median clustering with outliers , 2008, SODA '08.
[3] Dan Feldman,et al. A PTAS for k-means clustering based on weak coresets , 2007, SCG '07.
[4] Jirí Matousek. Construction of epsilon nets , 1989, SCG '89.
[5] Andreas Krause,et al. Coresets for Nonparametric Estimation - the Case of DP-Means , 2015, ICML.
[6] Sudipto Guha,et al. Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..
[7] Artem Barger,et al. k-Means for Streaming and Distributed Big Sparse Data , 2015, SDM.
[8] L. Schulman,et al. Universal ε-approximators for integrals , 2010, SODA '10.
[9] Christian Sohler,et al. Coresets in dynamic geometric data streams , 2005, STOC '05.
[10] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[11] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[12] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[13] Peter L. Bartlett,et al. Neural Network Learning - Theoretical Foundations , 1999 .
[14] David E. Tyler. A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .
[15] Dan Feldman,et al. Data reduction for weighted and outlier-resistant clustering , 2012, SODA.
[16] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[17] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[18] Rina Panigrahy,et al. Better streaming algorithms for clustering problems , 2003, STOC '03.
[19] Christian Sohler,et al. StreamKM++: A clustering algorithm for data streams , 2010, JEAL.
[20] Michael B. Cohen,et al. Dimensionality Reduction for k-Means Clustering and Low Rank Approximation , 2014, STOC.
[21] Ke Chen,et al. On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces and Their Applications , 2009, SIAM J. Comput..
[22] Yi Li,et al. Improved bounds on the sample complexity of learning , 2000, SODA '00.
[23] Dimitris Papailiopoulos,et al. Provable deterministic leverage score sampling , 2014, KDD.
[24] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[25] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[26] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[27] Rafail Ostrovsky,et al. Streaming k-means on well-clusterable data , 2011, SODA '11.
[28] Andreas Krause,et al. Strong Coresets for Hard and Soft Bregman Clustering with Applications to Exponential Family Mixtures , 2015, AISTATS.
[29] Elvezio Ronchetti,et al. A smoothing principle for the Huber and other location M-estimators , 2011, Comput. Stat. Data Anal..
[30] Andreas Krause,et al. Scalable Training of Mixture Models via Coresets , 2011, NIPS.
[31] Sudipto Guha. Tight results for clustering and summarizing data streams , 2009, ICDT '09.
[32] Kasturi R. Varadarajan,et al. Efficient Subspace Approximation Algorithms , 2007, Discrete & Computational Geometry.