Co-retrieval: A Boosted Reranking Approach for Video Retrieval

Video retrieval compares multimedia queries to a video collection in multiple dimensions and combines all the retrieval scores into a final ranking. Although text are the most reliable feature for video retrieval, features from other modalities can provide complementary information. This paper presents a reranking framework for video retrieval to augment retrieval based on text features with other evidence. We also propose a boosted reranking algorithm called Co-Retrieval, which combines a boosting type algorithm and a noisy label prediction scheme to automatically select the most useful weak hypotheses for different queries. The proposed approach is evaluated with queries and video from the 65-hour test collection of the 2003 NIST TRECVID evaluation.

[1]  P. Laird Learning from Good and Bad Data , 1988 .

[2]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[3]  Shih-Fu Chang,et al.  MetaSEEk: a content-based metasearch engine for images , 1997, Electronic Imaging.

[4]  Yiming Yang,et al.  Translingual Information Retrieval: A Comparative Evaluation , 1997, IJCAI.

[5]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[6]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[7]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[8]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[9]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[10]  Rong Yan,et al.  The combination limit in multimedia retrieval , 2003, MULTIMEDIA '03.

[11]  Paul Over,et al.  TRECVID: Benchmarking the Effectivenss of Information Retrieval Tasks on Digital Video , 2003, CIVR.

[12]  Djoerd Hiemstra,et al.  Combining Information Sources for Video Retrieval , 2003, TRECVID.

[13]  Tobun Dorbin Ng,et al.  Informedia at TRECVID 2003 : Analyzing and Searching Broadcast News Video , 2003, TRECVID.

[14]  Alan F. Smeaton,et al.  Design, implementation and testing of an interactive video retrieval system , 2003, MIR '03.

[15]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[16]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[17]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[18]  Yoram Singer,et al.  Logistic Regression, AdaBoost and Bregman Distances , 2000, Machine Learning.

[19]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.

[20]  Michael Collins,et al.  Discriminative Reranking for Natural Language Parsing , 2000, CL.