De Rham Complexes for Weak Galerkin Finite Element Spaces

Two de Rham complex sequences of the finite element spaces are introduced for weak finite element functions and weak derivatives developed in the weak Galerkin (WG) finite element methods on general polyhedral elements. One of the sequences uses polynomials of equal order for all the finite element spaces involved in the sequence and the other one uses polynomials of naturally decending orders. It is shown that the diagrams in both de Rham complexes commute for general polyhedral elements. The exactness of one of the complexes is established for the lowest order element.

[1]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[2]  Frédéric Hecht,et al.  A Discrete Differential Sequence for Elasticity Based upon Continuous Displacements , 2013, SIAM J. Sci. Comput..

[3]  L. Demkowicz,et al.  De Rham diagram for hp finite element spaces , 2000 .

[4]  Junping Wang,et al.  Discretization of div–curl Systems by Weak Galerkin Finite Element Methods on Polyhedral Partitions , 2015, J. Sci. Comput..

[5]  Arash Yavari,et al.  Differential Complexes in Continuum Mechanics , 2013, 1307.1809.

[6]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[7]  Michael Neilan,et al.  Discrete and conforming smooth de Rham complexes in three dimensions , 2015, Math. Comput..

[8]  Kaibo Hu,et al.  Nonstandard finite element de Rham complexes on cubical meshes , 2019, BIT Numerical Mathematics.

[9]  Xuecheng Tai,et al.  A discrete de Rham complex with enhanced smoothness , 2006 .

[10]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .

[11]  Ralf Hiptmair,et al.  Canonical construction of finite elements , 1999, Math. Comput..

[12]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[13]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[14]  Jun Hu,et al.  Nodal finite element de Rham complexes , 2018, Numerische Mathematik.

[15]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[16]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[17]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[18]  H. Whitney Geometric Integration Theory , 1957 .