Evaluation of wave impact loads on caisson breakwaters based on joint probability of impact maxima a

When waves break against seawalls, vertical breakwaters, piers or jetties, they abruptly transfer their momentum into the structure. This energy transfer is always spectacular and perpetually unrepeatable but can also be very violent and affect the stability and the integrity of coastal structures. Over the last 15 years, increasing awareness of wave-impact induced structural failures of maritime structures has emphasised the need for a more complete approach to dynamic responses, including effects of impulsive loads. At the same time, movement of design standards toward probabilistic approaches requires new statistical tools able to account for uncertainties in the variability of wave loading processes. This paper presents a new approach to the definition of loads for use in performance design of vertical coastal structures subject to breaking wave impacts. Based on conservation of momentum and joint probability of non-dimensional wave impact maxima and rise times from large-scale test measurements, a new set of equations have been derived to characterise design impact loads at different non-exceedance probability levels and guidance is given for the estimation of the static-equivalent design loads to be used in early-stage feasibility studies. Predictions of static equivalent design loads and corresponding safety factor against sliding using the proposed methodology are found to be in very good agreement with both predictions by most established deterministic methods and field observations reported in literature.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Giovanni Cuomo,et al.  EVALUATION OF DESIGN IMPACT LOADS BASED ON JOINT PROBABILITY OF IMPACT MAXIMA AND RISE TIMES , 2009 .

[3]  R A Bagnold,et al.  INTERIM REPORT ON WAVE-PRESSURE RESEARCH. (INCLUDES PLATES AND PHOTOGRAPHS). , 1939 .

[4]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[5]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[6]  合田 良実,et al.  Random seas and design of maritime structures , 1985 .

[7]  Gustaf Richert,et al.  EXPERIMENTAL INVESTIGATION OP SHOCK PRESSURES AGAINST BREAKWATERS , 1968 .

[8]  Hans-Werner Partenscky,et al.  DYNAMIC FORCES DUE TO WAVES BREAKING AT VERTICAL COASTAL STRUCTURES , 1988 .

[9]  P. Bird,et al.  Wave impact loading on vertical structures , 1995 .

[10]  Giovanni Cuomo,et al.  Dynamic Wave Loads on Coastal Structures: Analysis of Impulsive and Pulsating Wave Loads , 2004 .

[11]  D. Peregrine Water-wave impact on walls , 2003 .

[12]  M. Salih Kirkgöz Secondary Pressures of Waves Breaking on Seawall , 1983 .

[13]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[14]  George Kimeldorf,et al.  One-parameter families of bivariate distributions with fixed marginals , 1975 .

[15]  P. A. D. Bird,et al.  The influence of air and scale on wave impact pressures , 2001 .

[16]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[17]  M. Salih Kirkgoz,et al.  Shock Pressure of Breaking Waves on Vertical Walls , 1982 .

[18]  R. Clough,et al.  Dynamics Of Structures , 1975 .

[19]  F. E. Richart,et al.  DYNAMIC RESPONSE OF FOOTINGS TO VERTICAL LOADING , 1966 .

[20]  Yoshimi Goda,et al.  Dynamic response of upright breakwaters to impulsive breaking wave forces , 1994 .

[21]  Yoshio Muraki,et al.  Field Observations of Wave Pressure, Wave Run-Up, and Oscillation of Breakwater , 1966 .

[22]  H. W. Partenscky,et al.  Impact Loading and Dynamic Response of Caisson Breakwaters - Results of Large-Scale Model Tests - , 1993 .

[23]  Tom Bruce,et al.  Violent wave overtopping - measurements at large and small scale , 2003 .

[24]  Gao Ming,et al.  DYNAMIC STUDIES ON CAISSON-TYFE BREAKWATERS , 1988 .

[25]  Y. Goda,et al.  A New Method of Wave Pressure Calculation for the Design of Composite Breakwaters , 1973 .

[26]  H. W. Partenscky,et al.  Classification of breaking wave loads on vertical structures , 1993 .

[27]  R. Plackett A Class of Bivariate Distributions , 1965 .

[28]  P.H.A.J.M. van Gelder,et al.  Modelling of extreme wave heights and periods through copulas , 2005 .

[29]  Gerassimos A. Athanassoulis,et al.  Bivariate distributions with given marginals with an application to wave climate description , 1994 .

[30]  Michel K. Ochi,et al.  Applied probability and stochastic processes in engineering and physical sciences , 1990 .

[31]  Masataro Hattori,et al.  Wave impact pressure on vertical walls under breaking waves of various types , 1994 .

[32]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[33]  P. A. Blackmore,et al.  Experiments on full-scale wave impact pressures , 1984 .

[34]  Katsutoshi Tanimoto,et al.  Uplift Wave Forces Due to Compression of Enclosed Air Layer and Their Similitude Law , 1985 .

[35]  M. Salih Kirkgöz,et al.  AN EXPERIMENTAL INVESTIGATION OF A VERTICAL WALL RESPONSE TO BREAKING WAVE IMPACT , 1990 .

[36]  J. Vrijling,et al.  The estimation of extreme quantiles of wind velocity using L-moments in the peaks-over-threshold approach , 2001 .

[37]  H. Oumeraci,et al.  Analysis of the dynamic response of caisson breakwaters , 1994 .

[38]  N.W.H. Allsop,et al.  New design methods for wave impact loadings on vertical breakwaters and seawalls , 2010 .

[39]  H. Mitsuyasu,et al.  SHOCK PRESSURE OF BREAKING WAVE , 1966 .

[40]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[41]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[42]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[43]  Yoshimi Goda,et al.  Random Seas and Design of Maritime Structures , 1985 .

[44]  J. Hosking L‐Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics , 1990 .

[45]  A. Chopra Dynamics of Structures: A Primer , 1981 .

[46]  M. Salih Kirkgöz,et al.  IMPACT PRESSURE OF BREAKING WAVES ON VERTICAL AND SLOPING WALLS , 1991 .

[47]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[48]  Yoshimi Goda,et al.  NEW WAVE PRESSURE FORMULAE FOR COMPOSITE BREAKWATERS , 1974 .

[49]  Philip E. Gill,et al.  Numerical methods for constrained optimization , 1974 .

[50]  J. Wolf Soil-structure-interaction analysis in time domain , 1988 .

[51]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[52]  M. Salih Kirkgöz,et al.  Influence of water depth on the breaking wave impact on vertical and sloping walls , 1992 .

[53]  Henry Braun,et al.  A simple metllod for testing goodness of fit in tile presence of nuisance parameters , 1980 .

[54]  H. Joe Multivariate models and dependence concepts , 1998 .

[55]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[56]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[57]  J. Richard Weggel,et al.  Numerical Model for Wave Pressure Distributions , 1970 .

[58]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[59]  M. Ochi Ocean Waves: The Stochastic Approach , 1998 .

[60]  Shigeo Takahashi,et al.  Dynamic response and sliding distance of composite breakwaters under breaking and non-breaking wave attack , 2011 .

[61]  Luca Martinelli,et al.  PROTOTYPE MEASUREMENTS OF THE DYNAMIC RESPONSE OF CAISSON BREAKWATERS , 1999 .

[62]  H. Oumeraci,et al.  Review and analysis of vertical breakwater failures — lessons learned , 1994 .

[63]  H. Joe Multivariate Models and Multivariate Dependence Concepts , 1997 .

[64]  H. Lundgren Wave shock forces: An analysis on deformations and wave forces in the wave and the foundation , 1969 .

[65]  R. Bagnold,et al.  Interim report on wave-pressure research , 1939 .

[66]  M. S. Kirkgöz,et al.  Breaking wave impact on vertical and sloping coastal structures , 1995 .

[67]  C. Petrauskas,et al.  Extrapolation of Historical Storm Data for Estimating Design-Wave Heights , 1971 .

[68]  Leopoldo Franco,et al.  Vertical breakwaters: the Italian experience , 1994 .

[69]  H. Oumeraci,et al.  IMPACT LOADS INDUCED BY PLUNGING BREAKERS ON VERTICAL STRUCTURES , 2010 .

[70]  Giovanni Cuomo,et al.  Wave impacts on vertical seawalls and caisson breakwaters , 2007 .

[71]  Th. von Kármán,et al.  The impact on seaplane floats during landing , 1929 .

[72]  R. Nelsen An Introduction to Copulas , 1998 .

[73]  Giovanni Cuomo,et al.  Breaking wave loads at vertical seawalls and breakwaters , 2010 .

[74]  Pj Hewson,et al.  WAVE IMPULSE PREDICTION FOR CAISSON DESIGN , 1997 .

[75]  H. Oumeraci,et al.  OSCILLATORY MOTIONS AND PERMANENT DISPLACEMENTS OF CAISSON BREAKWATERS SUBJECT TO IMPULSIVE BREAKING WAVE LOADS , 1995 .

[76]  Giovanni Cuomo,et al.  Scaling wave impact pressures on vertical walls , 2010 .

[77]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[78]  Hocine Oumeraci,et al.  WAVE IMPACT LOADING OF VERTICAL FACE STRUCTURES FOR DYNAMIC STABILITY ANALYSIS - PREDICTION FORMULAE , 1997 .

[79]  Hocine Oumeraci,et al.  Foundation Design of Caisson Breakwaters , 1996 .

[80]  Adel M. Kamel Shock Pressure on Coastal Structures , 1970 .

[81]  Hocine Oumeraci,et al.  CLASSIFICATION OF WAVE LOADING ON MONOLITHIC COASTAL STRUCTURES , 1999 .

[82]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[83]  M. Evans Statistical Distributions , 2000 .