Simulation of Potts models with real q and no critical slowing down.

A Monte Carlo algorithm is proposed to simulate the ferromagnetic q-state Potts model for any real q>0. A single update is a random sequence of disordering and deterministic moves, one for each link of the lattice. A disordering move attributes a random value to the link, regardless of the state of the system, while in a deterministic move this value is a state function. The relative frequency of these moves depends on the two parameters q and beta=1/kT. The algorithm is not affected by critical slowing down and the dynamical critical exponent z is exactly vanishing. We simulate in this way a three-dimensional Potts model in the range 2<q<3 for estimating the critical value q(c) where the thermal transition changes from second order to first order, and find q(c)=2.620+/-0.005.

[1]  Mark Sweeny Monte Carlo study of weighted percolation clusters relevant to the Potts models , 1983 .

[2]  Giorgio Parisi,et al.  Complex zeros in the partition function of the four-dimensional SU(2) lattice gauge model , 1982 .

[3]  E. Marinari,et al.  Complex zeroes of the d = 3 Ising model: Finite-size scaling and critical amplitudes , 1984 .

[4]  Weber,et al.  Cluster dynamics for first-order phase transitions in the Potts model. , 1993, Physical review. B, Condensed matter.

[5]  F. Y. Wu The Potts model , 1982 .

[6]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[7]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[8]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[9]  Janke,et al.  Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions. , 1995, Physical review letters.

[10]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[11]  Lee,et al.  New numerical method to study phase transitions. , 1990, Physical review letters.

[12]  J. Kogut,et al.  -expansions for the Lagrangian formulation of three-dimensional Potts models , 1982 .

[13]  F. Gliozzi,et al.  Thermal operators in Ising percolation , 2000 .

[14]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Kurt Binder,et al.  Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models , 1982 .

[16]  Critical behaviour of random-bond Potts models: a transfer matrix study , 1997, cond-mat/9711279.

[17]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[18]  J. Kosterlitz,et al.  Three-dimensional q-state Potts model: Monte Carlo study near q=3. , 1991, Physical review. B, Condensed matter.

[19]  M. Schick,et al.  q-state Potts model in general dimension , 1981 .

[20]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[21]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[22]  Three-dimensional 3-state Potts model revisited with new techniques , 1996, hep-lat/9612008.