A digital technique for analyzing a class of multicomponent signals
暂无分享,去创建一个
S. T. Nichols | S. Cohn-Sfetcu | M.R. Smith | S.T. Nichols | D.L. Henry | S. Cohn-Sfetcu | M.R. Smith | D. L. Henry
[1] S. Cohn-Sfetcu,et al. On the representation of signals by basis kernels with product argument , 1975, Proceedings of the IEEE.
[2] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals , 1938 .
[3] Richard R. Ernst,et al. Sensitivity Enhancement in Magnetic Resonance , 1966 .
[4] S. Cohn-Sfetcu,et al. Comment on fit to experimental data with exponential functions using the fast fourier transform , 1974 .
[5] C. Bargeron. Analysis of intensity correlation spectra of mixtures of polystyrene latex spheres: A comparison of direct least squares fitting with the method of cumulants , 1974 .
[6] Thomas S. Huang,et al. Inverse filtering for linear shift-variant imaging systems , 1972 .
[7] S. Wold. Spline Functions in Data Analysis , 1974 .
[8] R. Piessens. A new numerical method for the inversion of the Laplace transform , 1972 .
[9] D. Fry,et al. Optimum filtering for sensitivity enhancement in magnetic resonance , 1974 .
[10] M. Ekstrom. A spectral characterization of the ill-conditioning in numerical deconvolution , 1973, IEEE Transactions on Audio and Electroacoustics.
[11] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[12] W. Wayne Meinke,et al. Method for the Analysis of Multicomponent Exponential Decay Curves , 1959 .
[13] R. Damadian. Tumor Detection by Nuclear Magnetic Resonance , 1971, Science.
[14] M R Smith,et al. On the design and use of digital filters in certain experimental situations , 1975 .