On ($$\in, \in \vee q$$)-Fuzzy Filters of BL-Algebras

The authors introduce the notions of ($$\in, \in \vee q$$)-fuzzy Boolean (implicative, positive implicative, and fantastic) filters in BL-algebras, present some characterizations on these generalized fuzzy filters, and describe the relations among these generalized fuzzy filters. It is proved that an ($$\in, \in \vee q$$)-fuzzy filter in a BL-algebra is Boolean (implicative) if and only if it is both positive implicative and fantastic.

[1]  Pu Pao-Ming,et al.  Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence , 1980 .

[2]  Guojun Wang,et al.  On the Logic Foundation of Fuzzy Reasoning , 1999, Inf. Sci..

[3]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[4]  Esko Turunen,et al.  Boolean deductive systems of BL-algebras , 2001, Arch. Math. Log..

[5]  E. Turunen Mathematics Behind Fuzzy Logic , 1999 .

[6]  Kaitai Li,et al.  Fuzzy filters of BL-algebras , 2005, Inf. Sci..

[7]  E. Turunen BL-algebras of basic fuzzy logic , 1999 .

[8]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[9]  Esfandiar Eslami,et al.  Some Types of Filters in BL Algebras , 2007, Soft Comput..

[10]  Li Kaitai,et al.  Fuzzy Boolean and positive implicative filters of BL-algebras , 2005 .

[11]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[12]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[13]  A. Nola,et al.  Boolean products of BL-algebras , 2000 .

[14]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[15]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[16]  Cheng Zhang,et al.  Generalized fuzzy groups and many-valued implications , 2003, Fuzzy Sets Syst..

[17]  Y. Xu Lattice implication algebras , 1993 .

[18]  Y. Jun Implicative filters of lattice implication algebras , 1997 .

[19]  Antonio di Nola,et al.  Compact representations of BL-algebras , 2003, Arch. Math. Log..

[20]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[21]  Zhang Xiao-hong On Fuzzy Filters and Fuzzy Ideals of BL-algebras , 2006 .