Conductivity mismatch and voltage dependence of magnetoresistance in a semiconductor spin injection device

Magnetoresistance (MR) in a semiconductor spin injection and detection device is simulated by combining the formalisms for tunneling probabilities and spin polarized carrier diffusion. Thereby dependences of resistance and spin selectivity at the ferromagnet-semiconductor interface on voltage as well as on material parameters are determined. This leads to predicting the voltage dependence of MR of the overall ferromagnet-semiconductor device. It is found to be qualitatively similar to that of a magnetic tunnel junction. Similarly the dependence of the MR on the tunneling barrier height and thickness, and doping density are studied. Optimal material parameters for detection of spin polarized current are thus determined, which are helpful for designing experiments on spin injection into semiconductors.

[1]  George Kioseoglou,et al.  Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact , 2007 .

[2]  C. Adelmann,et al.  Electrical detection of spin transport in lateral ferromagnet–semiconductor devices , 2006, cond-mat/0701021.

[3]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[4]  D. Nikonov,et al.  Operation and Modeling of Semiconductor Spintronics Computing Devices , 2008 .

[5]  O.M.J. van 't Erve,et al.  Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry , 2007 .

[6]  C. Adelmann,et al.  Imaging Spin Transport in Lateral Ferromagnet/Semiconductor Structures , 2005, Science.

[7]  R M Macfarlane,et al.  Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). , 2005, Physical review letters.

[8]  Aubrey T. Hanbicki,et al.  Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor , 2002 .

[9]  Cock Lodder,et al.  Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets , 2006, Nature materials.

[10]  Mark S. Lundstrom,et al.  Modeling of spin metal-oxide-semiconductor field-effect transistor: A nonequilibrium Green’s function approach with spin relaxation , 2008, 0807.1709.

[11]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[12]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[13]  D. Nikonov,et al.  Research directions in beyond CMOS computing , 2007 .

[14]  R. Fiederling,et al.  Injection and detection of a spin-polarized current in a light-emitting diode , 1999, Nature.

[15]  E. Rashba Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem , 2000, cond-mat/0010473.

[16]  K. Ploog,et al.  Room-temperature spin injection from Fe into GaAs. , 2001, Physical review letters.

[17]  George Bourianoff,et al.  Emerging Nanoscale Memory and Logic Devices: A Critical Assessment , 2008, Computer.

[18]  K. Saraswat,et al.  Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application , 2009 .

[19]  V.F.Motsnyi,et al.  Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure , 2002 .

[20]  D. K. Young,et al.  Electrical spin injection in a ferromagnetic semiconductor heterostructure , 1999, Nature.

[21]  G. Schmidt,et al.  Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor , 1999, cond-mat/9911014.

[22]  Ian Appelbaum,et al.  Electronic measurement and control of spin transport in silicon , 2007, Nature.

[23]  Fert,et al.  Theory of the perpendicular magnetoresistance in magnetic multilayers. , 1993, Physical review. B, Condensed matter.

[24]  Daniel J. Connelly,et al.  Fermi-level depinning for low-barrier Schottky source/drain transistors , 2006 .

[25]  Albert Fert,et al.  Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor , 2001 .

[26]  S. Sugahara,et al.  A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain , 2004 .