Data Publishing against Realistic Adversaries
暂无分享,去创建一个
Ashwin Machanavajjhala | Johannes Gehrke | Michaela Götz | J. Gehrke | M. Götz | Ashwin Machanavajjhala
[1] Yufei Tao,et al. Personalized privacy preservation , 2006, Privacy-Preserving Data Mining.
[2] Ramakrishnan Srikant,et al. Privacy preserving OLAP , 2005, SIGMOD '05.
[3] J. Paris. The Uncertain Reasoner's Companion: A Mathematical Perspective , 1994 .
[4] Dan Suciu,et al. The Boundary Between Privacy and Utility in Data Publishing , 2007, VLDB.
[5] Roberto J. Bayardo,et al. Data privacy through optimal k-anonymization , 2005, 21st International Conference on Data Engineering (ICDE'05).
[6] Joseph Y. Halpern,et al. From Statistics to Beliefs , 1992, AAAI.
[7] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[8] David R. Musicant,et al. Learning from Aggregate Views , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[9] Ashwin Machanavajjhala,et al. l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.
[10] J. B. Paris,et al. The Uncertain Reasoner's Companion: Bibliography , 1995 .
[11] Dan Suciu,et al. A formal analysis of information disclosure in data exchange , 2004, SIGMOD '04.
[12] Cynthia Dwork,et al. Differential Privacy , 2006, ICALP.
[13] Ashwin Machanavajjhala,et al. Worst-Case Background Knowledge for Privacy-Preserving Data Publishing , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[14] Alexandre V. Evfimievski,et al. Limiting privacy breaches in privacy preserving data mining , 2003, PODS.
[15] Cynthia Dwork,et al. Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.
[16] Yufei Tao,et al. On Anti-Corruption Privacy Preserving Publication , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[17] David J. DeWitt,et al. Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[18] B. De Finetti,et al. Funzione caratteristica di un fenomeno aleatorio , 1929 .
[19] Ninghui Li,et al. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[20] Raghu Ramakrishnan,et al. Privacy Skyline: Privacy with Multidimensional Adversarial Knowledge , 2007, VLDB.
[21] David J. DeWitt,et al. Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.
[22] Yufei Tao,et al. Output perturbation with query relaxation , 2008, Proc. VLDB Endow..