Elektronentransfer und Ionenpaar-Bildung, 34 [1 - 3] Einkristallstruktur des Solvens-separierten Radikalionenpaares [9,9′-Bianthryle·⊖][Na⊕(DME)3] / Electron Transfer and Ion Pair Formation, 34 [1-3] Single Crystal Structure of the Solvent-Separated Ion Pair [9,9′-Bianthryle·⊖][Na⊕(DME)3]

Abstract The one-electron transfer to large π-delocalized hydrocarbons provides an interesting possibility to crystallize solvent-separated ion-pair salts containing optimally solvated cations. Accordingly, the reduction of 9.9′-bianthryl in aprotic 1.2-dimethoxyethane (DME) solution at a sodium metal mirror allows to grow dark blue, brick-like crystals of its radical anion and threefold DME-solvated sodium cation. The structure of the radical anion is very similar to that recently published for the neutral molecule. According to AM 1 enthalpy hypersurface calculations based on the structural data, the torsion angle between 60° and 120° is determined by the lattice packing and the negative charge is -π-delocalized predominantly within only one anthracene subunit. The counter cation [Na⊕(DME)3], reported only three times so far, shows a sixfold propeller-like coordination of approximate D3 skeletal symmetry with contact distances Na⊕···O between 232 and 243 pm and angles ≮ONa⊕O varying between 69° and 159°. Due to the small repulsion between the chelating DME molecules, the isodesmically calculated Na⊕ solvation enthalpy is more negative than that of the analogous tetrahydrofuran complex [Na⊕(THF)6] - as confirmed by the laboratory experience that salts of less stable anions are preferentially crystallized from a strongly cation solvating DME solution.