The Harary index of ordinary and generalized quasi-tree graphs

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. The quasi-tree graph is a graph G in which there exists a vertex v∈V(G) such that G−v is a tree. In this paper, we presented the upper and lower bounds on the Harary index of all quasi-tree graphs of order n and characterized the corresponding extremal graphs. Moreover we defined the k-generalized quasi-tree graph to be a connected graph G with a subset Vk⊆V(G) where |Vk|=k such that G−Vk is a tree. And we also determined the k-generalized quasi-tree graph of order n with maximal Harary index for all values of k and the extremal one with minimal Harary index for k=2.

[1]  Lihua Feng,et al.  The Harary index of trees , 2011, 1104.0920.

[2]  Kinkar Chandra Das,et al.  On Harary index of graphs , 2011, Discret. Appl. Math..

[3]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[4]  Ovidiu Ivanciuc,et al.  Design of topological indices. Part 4. Reciprocal distance matrix, related local vertex invariants and topological indices , 1993 .

[5]  M. Akbaş,et al.  Disconnectedness of the subgraph F3 for the group Γ3 , 2013 .

[6]  Lihua Feng,et al.  Zagreb, Harary and hyper-Wiener indices of graphs with a given matching number , 2010, Appl. Math. Lett..

[7]  Kexiang Xu,et al.  On Zagreb and Harary Indices , 2013 .

[8]  Bolian Liu,et al.  Trees with the seven smallest and fifteen greatest hyper-Wiener indices ∗ , 2010 .

[9]  Bo Zhou,et al.  On Harary index , 2008 .

[10]  Bo Zhou,et al.  Bounds on Harary index , 2009 .

[11]  Kexiang Xu Extremal Unicyclic and Bicyclic Graphs with Respect to Harary Index , 2013 .

[12]  Kexiang Xu Trees with the seven smallest and eight greatest Harary indices , 2012, Discret. Appl. Math..

[13]  Ivan Gutman,et al.  A PROPERTY OF THE WIENER NUMBER AND ITS MODIFICATIONS , 1997 .

[14]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[15]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[16]  M. Randic Novel molecular descriptor for structure—property studies , 1993 .

[17]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[18]  Nenad Trinajstić,et al.  Harary Index - Twelve Years Later* , 2002 .

[19]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[20]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[21]  Liying Kang,et al.  More on the Harary index of cacti , 2013 .

[22]  Aleksander Vesel,et al.  Wiener-type topological indices of phenylenes , 2002 .

[23]  Ante Graovac,et al.  On the Harary index of graph operations , 2013 .

[24]  Kexiang Xu,et al.  A Survey on Graphs Extremal with Respect to Distance-Based Topological Indices , 2014 .

[25]  Kexiang Xu,et al.  MAXIMAL HARARY INDEX OF UNICYCLIC GRAPHS WITH A GIVEN MATCHING NUMBER , 2013 .

[26]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[27]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[28]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[29]  R. Todeschini,et al.  Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing / Volume II: Appendices, References , 2009 .

[30]  Hongbo Hua,et al.  On Harary Index and Traceable Graphs , 2013 .

[31]  Sabir Hussain,et al.  A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications , 2013 .

[32]  Zhongxun Zhu,et al.  On the Harary Index of Cacti , 2014 .