Design of fast transforms for high-resolution image and video coding

We review design of 4-, 8-, and 16-point transforms currently used in image and video coding standards, and compare them with fast implementations of Discrete Cosine Transform of various other sizes (including non-dyadic even and odd numbers) in the range of 2-64. We show that among such transforms there exist few that offer better complexity/coding gain tradeoffs than current dyadic-sized transforms. In our construction and analysis we utilize an array of known techniques (such as Heideman's mapping between DCT and DFT, Winograd short length DFT modules, prime-factorand common-factor algorithms), and also offer a new factorization scheme for even-sized scaled transforms.

[1]  C. Sidney Burrus,et al.  Prime factor FFT algorithms for real-valued series , 1984, ICASSP.

[2]  Michael T. Heideman,et al.  Computation of an odd-length DCT from a real-valued DFT of the same length , 1992, IEEE Trans. Signal Process..

[3]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[4]  S. C. Chan,et al.  Direct methods for computing discrete sinusoidal transforms , 1990 .

[5]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Itu-T and Iso Iec Jtc Advanced video coding for generic audiovisual services , 2010 .

[7]  Yuriy A. Reznik,et al.  Low Complexity Fixed-Point Approximation of Inverse Discrete Cosine Transform , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[8]  W.-K. Development of integer cosine transforms by the principle of dyadic symmetry , 2004 .

[9]  B. Tseng,et al.  Comments on "An introduction to programming the winograd Fourier transform algorithm (WFTA)" , 1978 .

[10]  Gary J. Sullivan,et al.  Standardization of IDCT approximation behavior for video compression: the history and the new MPEG-C parts 1 and 2 standards , 2007, SPIE Optical Engineering + Applications.

[11]  C. Sidney Burrus,et al.  On the number of multiplications necessary to compute a length-2nDFT , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  E. Feig,et al.  On the multiplicative complexity of discrete cosine transforms , 1992, IEEE Trans. Inf. Theory.

[13]  Y. Arai,et al.  A Fast DCT-SQ Scheme for Images , 1988 .

[14]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[15]  Lu Yu,et al.  Efficient fixed-point approximations of the 8×8 inverse discrete cosine transform , 2007, SPIE Optical Engineering + Applications.

[16]  Chi-Wah Kok,et al.  Fast algorithm for computing discrete cosine transform , 1997, IEEE Trans. Signal Process..

[17]  T. Parks,et al.  A prime factor FFT algorithm using high-speed convolution , 1977 .

[18]  Harvey F. Silverman,et al.  An introduction to programming the Winograd Fourier transform algorithm (WFTA) , 1977 .

[19]  Itu-T Video coding for low bitrate communication , 1996 .

[20]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[21]  C. Burrus,et al.  DFT/FFT and Convolution Algorithms: Theory and Implementation , 1991 .

[22]  K. Rao,et al.  Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations , 2006 .

[23]  K. Rijkse,et al.  H.263: video coding for low-bit-rate communication , 1996, IEEE Commun. Mag..

[24]  Wai-Kuen Cham Development of integer cosine transforms by the principle of dyadic symmetry , 1989 .

[25]  C. Sidney Burrus A new prime factor FFT algorithm , 1981, ICASSP.

[26]  Yuriy A. Reznik,et al.  Fast 15x15 Transform for Image and Video Coding Applications , 2009, 2009 Data Compression Conference.

[27]  Douglas L. Jones,et al.  Real-valued fast Fourier transform algorithms , 1987, IEEE Trans. Acoust. Speech Signal Process..

[28]  G.S. Moschytz,et al.  Algorithm-architecture mapping for custom DSP chips , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[29]  Henrique S. Malvar,et al.  Signal processing with lapped transforms , 1992 .

[30]  Gary J. Sullivan,et al.  HD Photo: a new image coding technology for digital photography , 2007, SPIE Optical Engineering + Applications.

[31]  E. Dubois,et al.  A new algorithm for the radix-3 FFT , 1978 .