From self-assembled bilayer lipid membranes (BLMs) to supported BLMs on metal and gel substrates to practical applications

Abstract The inspiration for lipid bilayer research, without question, comes from the biological world. Although the first report on self-assembled bilayer lipid membranes (BLMs) in vitro was reported in 1961, experimental scientists including surface, colloid, and bioscientists have been dealing with these interfacial phenomena since Robert Hooke's time (1672). BLMs have been used in a number of applications ranging from basic membrane biophysics studies to the conversion of solar energy via water photolysis, and to biosensor development using supported bilayer lipid membranes (s-BLMs). This paper briefly summarizes the past research of our laboratory since 1974 on the use of BLMs as models of certain biological membranes. Further, we describe in some details our present work on supported BLMs as practical biosensors. The experiments carried out in close collaboration with others on s-BLMs are also presented. Supported BLMs provide the foundation for a variety of lipid bilayer-based molecular sensors that are sensitive, versatile, inexpensive (i.e. disposable) and open to all sorts of experimentation.

[1]  P. Baglioni,et al.  Mixed monolayers and bilayers of phospholipids with poly-γ-methyl-l-glutamate in α-helices: Rheological and electrical behavior , 1991 .

[2]  L. Dei,et al.  Effect of halothane on the electrical properties of mixed bilayers of glycerol monooleate andl,α-dipalmitoylphosphatidylcholine , 1995 .

[3]  A. Sheludko,et al.  Thin liquid films , 1967 .

[4]  M. D. Castro,et al.  Ion‐sensitive field‐effect transistors and ion‐selective electrodes as sensors in dynamic systems , 1995 .

[5]  H. Tien Self-assembled lipid bilayers as a smart material for nanotechnology , 1995 .

[6]  H. T. Tien,et al.  A combined AC-DC method for investigating supported bilayer lipid membranes , 1997 .

[7]  D. Exerowa,et al.  Stability and permeability of amphiphile bilayers. , 1992, Advances in colloid and interface science.

[8]  D. Exerowa,et al.  Linear energy with positive and negative sign , 1994 .

[9]  M. Kerker Surface chemistry and colloids , 1975 .

[10]  M. N. Jones The surface properties of phospholipid liposome systems and their characterisation. , 1995, Advances in colloid and interface science.

[11]  G. S. Leskin,et al.  The modeling of biological membrane properties by means of filters impregnated with lipid-like substances , 1987 .

[12]  M. Zviman,et al.  Reconstituted olfactory receptors in bilayer lipid membranes , 1995 .

[13]  K. Kontturi,et al.  Potential Dependence of Transmembrane Electron Transfer across Phospholipid Bilayers Mediated by Ubiquinone 10 , 1996 .

[14]  Jacek Gapiński,et al.  Amplitude and Polarity of the Light Gradient Photovoltage from Chloroplasts , 1994 .

[15]  A. Nikolov,et al.  Ordered micelle structuring in thin films formed from anionic surfactant solutions: II. Model development , 1989 .

[16]  T. Tsong,et al.  On electroporation of cell membranes and some related phenomena , 1990 .

[17]  D. Benos,et al.  Associated Proteins and Renal Epithelial Na+ Channel Function , 1996, The Journal of Membrane Biology.

[18]  A. Mauro,et al.  Voltage gating of conductance in lipid bilayers induced by porin from outer membrane of Neisseria gonorrhoeae. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hiroshi Nakanishi Artificial retina membranes , 1995 .

[20]  R. Benz,et al.  Pore formation by LamB of Escherichia coli in lipid bilayer membranes , 1986, Journal of bacteriology.

[21]  H. Galla,et al.  Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. , 1996, Biochimica et biophysica acta.

[22]  U. Krull Planar artificial biomembranes optimized for biochemical assay , 1987 .

[23]  S. Kalinowski,et al.  A four-electrode system for measurement of bilayer lipid membrane capacitance , 1995 .

[24]  A. Bangham Surrogate cells or Trojan horses. The discovery of liposomes. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  H. Ti Tien,et al.  Iodide sensitive sensor based on a supported bilayer lipid membrane containing a cluster form of carbon (fullerene C60) , 1996 .

[26]  Kiyoshi Toko,et al.  Effect of taste substances on electric characteristics of a lipid cast membrane with a single pore , 1989 .

[27]  J. Manassen,et al.  Photoinduced and redox-induced transmembrane processes with vesicle-stabilized colloidal cadmium sulfide and multicharged viologen derivatives , 1991 .

[28]  Guo,et al.  Phase behavior of pure lipid bilayers with mismatch interactions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  Zhiqiang Zhang,et al.  Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Studies on the Self-Assembly Characteristics of the Black Soap Film , 1995 .

[30]  R. Bean,et al.  Discrete Conductance Fluctuations in Lipid Bilayer Protein Membranes , 1969, The Journal of general physiology.

[31]  H. Ti Tien,et al.  Electrochemistry of supported bilayer lipid membranes: background and techniques for biosensor development , 1997 .

[32]  H. Ti Tien,et al.  A new method for the determination of electrical properties of supported bilayer lipid membranes by cyclic voltammetry , 1996 .

[33]  R. Rolandi,et al.  Electrical properties of polymerized, planar, bimolecular membranes , 1987 .

[34]  P. Bisch,et al.  Nonlinear dynamics and rupture of lipid bilayers , 1993 .

[35]  O. Shirai,et al.  Ion transfer through a liquid membrane or a bilayer lipid membrane in the presence of sufficient electrolytes , 1995 .

[36]  H. Tien,et al.  Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes. , 1986, Biochimica et biophysica acta.

[37]  Vladimir Tvarozek,et al.  Self-assembled BLMs: biomembrane models and biosensor applications , 1997 .

[38]  Huipin Yuan,et al.  An agarose-stabilized BLM: a new method for forming bilayer lipid membranes , 1996 .

[39]  P. Vassilev,et al.  Reconstitution of membrane molecular mechanisms in bilayer lipid membranes and patch-clamp bilayers. , 1989, Sub-cellular biochemistry.

[40]  A. Chanturiya Detection of transient capacitance increase associated with channel formation in lipid bilayers. , 1990, Biochimica et biophysica acta.

[41]  Winterhalter,et al.  Effect of voltage on pores in membranes. , 1987, Physical review. A, General physics.

[42]  W Leibl,et al.  Why does the light-gradient photovoltage from photosynthetic organelles show a wavelength-dependent polarity? , 1993, Biophysical journal.

[43]  Angelica L. Ottova-Leitmannova,et al.  Self-assembled and supported BLMs as an adaptive material for biotechnology , 1996, Smart Structures.

[44]  Charles Vernon Boys,et al.  Soap-bubbles, their colours and the forces which mould them , 1912 .

[45]  H. Ti Tien,et al.  Bilayer lipid membranes (BLM) : theory and practice , 1974 .

[46]  P. Seta,et al.  Mechanism and kinetic analysis of the photo-induced electron transfer mediated by a stacked metallotriporphyrin in planar lipid bilayers , 1992 .

[47]  B. Jap,et al.  Three-dimensional electron diffraction of PhoE porin to 2.8 A resolution. , 1990, Journal of molecular biology.

[48]  H. Ti Tien,et al.  Thin-film microsystem applicable in (bio)chemical sensors , 1994 .

[49]  R. Rolandi,et al.  Photovoltages in bilayer lipid membranes incorporating cadmium sulfide particles , 1990 .

[50]  R. Rolandi,et al.  Photovoltage generation in bilayer lipid membrane-cadmium sulfide junctions , 1992 .

[51]  D. Benos,et al.  Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. , 1997, Biophysical journal.

[52]  D. Exerowa,et al.  Bilayer lipid membrane permeation and rupture due to hole formation. , 1983, Biochimica et biophysica acta.

[53]  J. Mountz,et al.  PHOTOEFFECTS OF PIGMENTED LIPID MEMBRANES IN A MICROPOROUS FILTER , 1978 .

[54]  B. Bhowmik,et al.  Photo-effect in phospholipid liposome containing riboflavin. , 1995, Chemistry and physics of lipids.

[55]  M. Przybylski,et al.  Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. , 1995, Biochemistry.

[56]  H. Tien,et al.  DEPOSITION OF METALLIC and SEMICONDUCTING LAYERS ONTO BILAYER LIPID MEMBRANES , 1987 .

[57]  H. Tien,et al.  Antigen-antibody-complement reaction studies on micro bilayer lipid membranes. , 1984, Immunological communications.

[58]  A. Kabalnov,et al.  Phospholipids as Emulsion Stabilizers. 1. Interfacial Tensions , 1995 .

[59]  M. Kozlov,et al.  Fission of the bilayer lipid tube , 1984 .

[60]  H. Shiku,et al.  Electron transfer at a planar bilayer lipid membrane incorporated with 7,7,8,8-tetracyanoquinodimethane studied by a.c. impedance spectroscopy , 1993 .

[61]  A. Gliozzi,et al.  Model systems: A strategy for studying biological membranes , 1989 .

[62]  H. Tien Bilayer lipid membrane‐based electrochemical biosensors , 1988 .

[63]  R. Pastor,et al.  On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. , 1996, Biophysical journal.

[64]  C. A. Hasselbacher,et al.  Use of an oriented transmembrane protein to probe the assembly of a supported phospholipid bilayer. , 1994, Biophysical journal.

[65]  Alexander G. Petrov,et al.  First observation of the converse flexoelectric effect in bilayer lipid membranes , 1994 .

[66]  V. Y. Evtodienko,et al.  Effect of the alkyl chain length of monocarboxylic acid on the permeation through bilayer lipid membranes. , 1996, Biochimica et biophysica acta.

[67]  P. Paquin,et al.  Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. , 1983, Journal of biochemical and biophysical methods.

[68]  D. Benos,et al.  Regulation by Na+ and Ca2+ of renal epithelial Na+ channels reconstituted into planar lipid bilayers , 1995, The Journal of general physiology.

[69]  H. T. Tien,et al.  Bilayer lipid membranes [BLM]: an experimental system for biomolecular electronic devices development , 1992 .

[70]  K. Jørgensen,et al.  Dynamic lipid-bilayer heterogeneity: a mesoscopic vehicle for membrane function? , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[71]  D. R. Kalkwarf,et al.  Ion-diffusion potentials and electrical rectification across lipid membranes activated by excitation-induced material. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[73]  H. Terada,et al.  Stable phospholipid membrane supported on porous filter paper. , 1987, Biochemical and biophysical research communications.

[74]  H. Tien,et al.  Biophysical aspects of agar-gel supported bilayer lipid nembranes: a new method for forming and studying planar bilayer lipid membranes , 1996 .

[75]  R. Lennox,et al.  Structure and electrochemical properties of microfiltration filter-lipid membrane systems , 1982 .

[76]  H. Tien,et al.  Semiconductor septum electrochemical photovoltaic cell with electrodeposited CdSe thin films , 1990 .

[77]  Y. Fang,et al.  The growth of bilayer defects and the induction of interdigitated domains in the lipid-loss process of supported phospholipid bilayers. , 1997, Biochimica et biophysica acta.

[78]  S. Micelli,et al.  Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. , 1996, Biophysical journal.

[79]  H. Tien,et al.  PHOTOSENSITIZATION SYSTEMS OF COVALENTLY LINKED PHTHALOCYANINE COMPLEXES IN BOTH BILAYER LIPID MEMBRANES AND TIN OXIDE PHOTOVOLTAIC CELL , 1994 .

[80]  H. Tien,et al.  Effect of Surfactant on TPP(tetraphenylporphyrin)-SnO2 Photovoltaic Cell , 1994 .

[81]  T. Tsong,et al.  Electroporation of cell membranes. , 1991, Biophysical journal.

[82]  W. Hanke,et al.  Planar Lipid Bilayers: Methods and Applications , 1994 .