Self-testing mutually unbiased bases in the prepare-and-measure scenario

We show that $2^d\to1$ quantum random access codes are optimised uniquely by measurements corresponding to mutually unbiased bases. Therefore, they provide an ideal self-test in the prepare-and-measure scenario for mutually unbiased bases in arbitrary dimension -- that is, we can characterise the measurements based solely on their outcome statistics. In dimensions where there is only one equivalence class of pairs of mutually unbiased bases, this characterisation is up to a unitary transformation and a global complex conjugation. Moreover, they self-test the states used on the encoding side in the same manner. While proving this result, we also provide a necessary condition for saturating an operator norm-inequality derived by Kittaneh.

[1]  Fuad Kittaneh Norm Inequalities for Certain Operator Sums , 1997 .

[2]  Nicolas Gisin,et al.  Bell inequality for quNits with binary measurements , 2003, Quantum Inf. Comput..

[3]  P. Jaming,et al.  A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6 , 2009, 0902.0882.

[4]  Marcin Pawłowski,et al.  Connections between Mutually Unbiased Bases and Quantum Random Access Codes. , 2017, Physical review letters.

[5]  A. Acín,et al.  Simulating Positive-Operator-Valued Measures with Projective Measurements. , 2016, Physical review letters.

[6]  T. H. Yang,et al.  Robust self-testing of the singlet , 2012, 1203.2976.

[7]  M. Horodecki,et al.  Locking classical correlations in quantum States. , 2003, Physical review letters.

[8]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[9]  Mohamed Bourennane,et al.  Experimental device-independent tests of classical and quantum dimensions , 2011, Nature Physics.

[10]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[11]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[12]  M. Pawłowski,et al.  Semi-device-independent randomness certification usingn→1quantum random access codes , 2011, 1109.5259.

[13]  William Hall,et al.  Numerical evidence for the maximum number of mutually unbiased bases in dimension six , 2007 .

[14]  Jean-Daniel Bancal,et al.  Physical characterization of quantum devices from nonlocal correlations , 2013, 1307.7053.

[15]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[16]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[17]  Miguel Navascues,et al.  Device-independent tomography of multipartite quantum states , 2014, 1407.5911.

[18]  R. Karandikar,et al.  Sankhyā, The Indian Journal of Statistics , 2006 .

[19]  P. K. Aravind Solution to the King’s Problem in Prime Power Dimensions , 2002 .

[20]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[21]  S. Wehner,et al.  A monogamy-of-entanglement game with applications to device-independent quantum cryptography , 2012, 1210.4359.

[22]  Ferenc Szöllősi,et al.  Complex Hadamard matrices of order 6: a four‐parameter family , 2012 .

[23]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[24]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[25]  Inner derivations and norm equality , 2001 .

[26]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[27]  Jkedrzej Kaniewski,et al.  Self-testing of binary observables based on commutation , 2017, 1702.06845.

[28]  Armin Tavakoli,et al.  Self-testing quantum states and measurements in the prepare-and-measure scenario , 2018, Physical Review A.

[29]  N. Brunner,et al.  Experimental estimation of the dimension of classical and quantum systems , 2011, Nature Physics.

[30]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[31]  Valerio Scarani,et al.  All the self-testings of the singlet for two binary measurements , 2015, 1511.04886.

[32]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[33]  M. Veltman,et al.  John S. Bell on the foundations of quantum mechanics , 2001 .

[34]  Stefan Weigert,et al.  Mutually unbiased bases and semi-definite programming , 2010, 1006.0093.

[35]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[36]  Rodrigo Gallego,et al.  Device-independent tests of classical and quantum dimensions. , 2010, Physical review letters.

[37]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[38]  Miguel Navascués,et al.  Robust and versatile black-box certification of quantum devices. , 2014, Physical review letters.

[39]  E. Knill,et al.  Theory of quantum computation , 2000, quant-ph/0010057.

[40]  T. R. Tan,et al.  Chained Bell Inequality Experiment with High-Efficiency Measurements. , 2016, Physical review letters.

[41]  Stefano Pironio,et al.  Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing , 2015, 1504.06960.

[42]  Nicolas Brunner,et al.  Semi-device-independent security of one-way quantum key distribution , 2011, 1103.4105.

[43]  R. Bhatia Matrix Analysis , 1996 .

[44]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[45]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[46]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[47]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[48]  Marcelo Terra Cunha,et al.  Most incompatible measurements for robust steering tests , 2017, 1704.02994.

[49]  Reinhard F. Werner,et al.  Bell’s inequalities and quantum field theory. I. General setting , 1987 .

[50]  A. Winter,et al.  Entropic uncertainty relations—a survey , 2009, 0907.3704.

[51]  Valerio Scarani,et al.  All pure bipartite entangled states can be self-tested , 2016, Nature Communications.

[52]  M. Alomari Numerical Radius Inequalities for Hilbert Space Operators , 2018, Complex Analysis and Operator Theory.

[53]  Erkka Haapasalo,et al.  Robustness of incompatibility for quantum devices , 2015, 1502.04881.

[54]  Y. Aharonov,et al.  The mean king's problem: Prime degrees of freedom , 2001, quant-ph/0101134.

[55]  T. Heinosaari,et al.  Noise robustness of the incompatibility of quantum measurements , 2015, 1501.04554.

[56]  Maris Ozols,et al.  Quantum Random Access Codes with Shared Randomness , 2008, 0810.2937.

[57]  U. Vazirani,et al.  Quantum encodings and applications to locally decodable codes and communication complexity , 2004 .

[58]  S. Popescu,et al.  Which states violate Bell's inequality maximally? , 1992 .

[59]  Armin Tavakoli,et al.  Quantum Random Access Codes Using Single d-Level Systems. , 2015, Physical review letters.

[60]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[61]  Paul Skrzypczyk,et al.  Quantifying Measurement Incompatibility of Mutually Unbiased Bases. , 2018, Physical review letters.

[62]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[63]  Jędrzej Kaniewski,et al.  Analytic and Nearly Optimal Self-Testing Bounds for the Clauser-Horne-Shimony-Holt and Mermin Inequalities. , 2016, Physical review letters.

[64]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[65]  Miguel Navascues,et al.  Robust Self Testing of Unknown Quantum Systems into Any Entangled Two-Qubit States , 2013 .

[66]  Antonio Acín,et al.  Device-Independent Entanglement Certification of All Entangled States. , 2018, Physical review letters.

[67]  S. Massar,et al.  Device-independent state estimation based on Bell’s inequalities , 2009, 0907.2170.

[68]  Ivan vSupi'c,et al.  Self-testing protocols based on the chained Bell inequalities , 2015, 1511.09220.

[69]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[70]  Ernesto F. Galvao,et al.  Foundations of quantum theory and quantum information applications , 2002 .

[71]  S. Wehner,et al.  Entropic uncertainty relations and locking: tight bounds for mutually unbiased bases , 2006, quant-ph/0606244.

[72]  M. Birkner,et al.  Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach , 2002 .

[73]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[74]  W. Beck,et al.  Metallkomplexe von Biologisch Wichtigen Liganden, CXLVIII [1]. Katalytische Peptidsynthese aus Glycinester miit Hilfe von Triflaten Und Cloriden der Seltenen Erden, sowie von Metall(III), (IV), (V) und (VI)-Chloriden / Metal Complexes of Biologically Important Ligands, CXLVIII [1]. Synthesis of Pept , 2003 .

[75]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[76]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.