Isogeometric-based mapping modeling and buckling analysis of stiffened panels

[1]  P. Hao,et al.  A NURBS-based degenerated stiffener element for isogeometric static and buckling analysis , 2022, Computer Methods in Applied Mechanics and Engineering.

[2]  Weihong Zhang,et al.  Combined parameterization of material distribution and surface mesh for stiffener layout optimization of complex surfaces , 2022, Structural and Multidisciplinary Optimization.

[3]  Balakrishnan Devarajan,et al.  Analyzing Thermal Buckling in Curvilinearly Stiffened Composite Plates with Arbitrary Shaped Cutouts Using Isogeometric Level Set Method , 2021, Aerospace Science and Technology.

[4]  Yingjun Wang,et al.  Isogeometric analysis based on geometric reconstruction models , 2021, Frontiers of Mechanical Engineering.

[5]  Ge Yin,et al.  On the geometrically exact formulations of finite deformable isogeometric beams , 2021, Computational Mechanics.

[6]  Gang Li,et al.  Post-buckling behavior of stiffened cylindrical shell and experimental validation under non-uniform external pressure and axial compression , 2021 .

[7]  T. Q. Bui,et al.  Composite FG plates with different internal cutouts: Adaptive IGA buckling analysis without trimmed surfaces , 2020 .

[8]  Bo Wang,et al.  Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces , 2020, Structural and Multidisciplinary Optimization.

[9]  Ping Hu,et al.  Isogeometric analysis for trimmed CAD surfaces using multi-sided toric surface patches , 2020, Comput. Aided Geom. Des..

[10]  Yu Wang,et al.  Progressive optimization of complex shells with cutouts using a smart design domain method , 2020 .

[11]  S. Natarajan,et al.  Isogeometric analysis of thin Reissner–Mindlin shells: locking phenomena and B-bar method , 2020, Computational Mechanics.

[12]  B. Devarajan,et al.  Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis , 2020 .

[13]  Yu Wang,et al.  Collaborative design of fiber path and shape for complex composite shells based on isogeometric analysis , 2019, Computer Methods in Applied Mechanics and Engineering.

[14]  C. Dong,et al.  Isogeometric vibration and buckling analyses of curvilinearly stiffened composite laminates , 2019, Applied Mathematical Modelling.

[15]  Seonho Cho,et al.  Isogeometric configuration design sensitivity analysis of geometrically exact shear-deformable beam structures , 2019, Computer Methods in Applied Mechanics and Engineering.

[16]  Joseph Morlier,et al.  The embedded isogeometric Kirchhoff–Love shell: From design to shape optimization of non-conforming stiffened multipatch structures , 2019, Computer Methods in Applied Mechanics and Engineering.

[17]  Dan Wang,et al.  Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures , 2019, Computer Methods in Applied Mechanics and Engineering.

[18]  Y. Guo,et al.  Isogeometric stability analysis of thin shells: From simple geometries to engineering models , 2019, International Journal for Numerical Methods in Engineering.

[19]  Roger A. Sauer,et al.  A NURBS-based Inverse Analysis for Reconstruction of Nonlinear Deformations of Thin Shell Structures , 2018, ArXiv.

[20]  Dixiong Yang,et al.  Smooth size design for the natural frequencies of curved Timoshenko beams using isogeometric analysis , 2018, Structural and Multidisciplinary Optimization.

[21]  Paul M. Weaver,et al.  Optimization of postbuckling behaviour of variable thickness composite panels with variable angle tows: Towards “Buckle-Free” design concept , 2018 .

[22]  Thomas J. R. Hughes,et al.  A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects , 2017, Archives of computational methods in engineering : state of the art reviews.

[23]  Roland Wüchner,et al.  Embedded structural entities in NURBS-based isogeometric analysis , 2017 .

[24]  C. Y. Dong,et al.  Static and dynamic analyses of isogeometric curvilinearly stiffened plates , 2017 .

[25]  Dixiong Yang,et al.  Isogeometric buckling analysis of composite variable-stiffness panels , 2017 .

[26]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[27]  Weihong Zhang,et al.  Buckling optimization design of curved stiffeners for grid-stiffened composite structures , 2017 .

[28]  Jihong Zhu,et al.  Topology Optimization in Aircraft and Aerospace Structures Design , 2016 .

[29]  Roland Wüchner,et al.  Nonlinear isogeometric spatial Bernoulli Beam , 2016 .

[30]  Bo Wang,et al.  Efficient Optimization of Cylindrical Stiffened Shells with Reinforced Cutouts by Curvilinear Stiffeners , 2016 .

[31]  Rakesh K. Kapania,et al.  Buckling analysis of unitized curvilinearly stiffened composite panels , 2016 .

[32]  de R René Borst,et al.  Propagation of delamination in composite materials with isogeometric continuum shell elements , 2015 .

[33]  Rakesh K. Kapania,et al.  Vibration and Buckling Analysis of Curvilinearly Stiffened Plates Using Finite Element Method , 2015 .

[34]  Roland Wüchner,et al.  Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures , 2015 .

[35]  Dan Wang,et al.  Global and local buckling analysis of grid-stiffened composite panels , 2015 .

[36]  Rakesh K. Kapania,et al.  EBF3PanelOpt: An optimization framework for curvilinear blade-stiffened panels , 2013 .

[37]  Hung Nguyen-Xuan,et al.  Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS‐based isogeometric approach , 2012 .

[38]  Weihong Zhang,et al.  A bispace parameterization method for shape optimization of thin‐walled curved shell structures with openings , 2012 .

[39]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[40]  Jun-Hai Yong,et al.  Algorithm for orthogonal projection of parametric curves onto B-spline surfaces , 2011, Comput. Aided Des..

[41]  Sung-Kie Youn,et al.  Isogeometric analysis with trimming technique for problems of arbitrary complex topology , 2010 .

[42]  Rakesh K. Kapania,et al.  Wing-Box Weight Optimization Using Curvilinear Spars and Ribs (SpaRibs) , 2010 .

[43]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[44]  Abdul Hamid Sheikh,et al.  Parametric Study on the Dynamic Instability Behavior of Laminated Composite Stiffened Plate , 2009 .

[45]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[46]  Rakesh K. Kapania,et al.  Vibration of Plate with Curvilinear Stiffeners Using Mesh-Free Method , 2009 .

[47]  Rakesh K. Kapania,et al.  Buckling and Static Analysis of Curvilinearly Stiffened Plates Using Mesh-Free Method , 2009 .

[48]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[49]  Abdul Hamid Sheikh,et al.  Buckling and dynamic instability analysis of stiffened shell panels , 2006 .

[50]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[51]  Gábor Renner,et al.  Exact and approximate computation of B-spline curves on surfaces , 2004, Comput. Aided Des..

[52]  Su-Seng Pang,et al.  Optimization for buckling loads of grid stiffened composite panels , 2003 .

[53]  YingLiang Ma,et al.  Point inversion and projection for NURBS curve and surface: Control polygon approach , 2003, Comput. Aided Geom. Des..

[54]  Raphael T. Haftka,et al.  Challenges in Comparing Numerical Solutions for Optimum Weights of Stiffened Shells , 2003 .

[55]  Su-Seng Pang,et al.  Buckling load analysis of grid stiffened composite cylinders , 2003 .

[56]  B. Gangadhara Prusty,et al.  Analysis of stiffened shell for ships and ocean structures by finite element method , 2001 .

[57]  Ahmed K. Noor,et al.  Structures Technology for Future Aerospace Systems , 1998 .

[58]  Wayne Tiller,et al.  Geometry-based triangulation of trimmed NURBS surfaces , 1998, Comput. Aided Des..

[59]  Yuan-Ping Hu,et al.  Moving a B-spline surface to a curve--a trimmed surface matching algorithm , 1997, Comput. Aided Des..

[60]  E. T. Y. Lee,et al.  Computing a chain of blossoms, with application to products of splines , 1994, Comput. Aided Geom. Des..

[61]  G. Sinha,et al.  Finite Element Free Vibration Analysis of Stiffened Shells , 1994 .

[62]  Domenico Bruno,et al.  Buckling of moderately thick composite plates , 1991 .

[63]  M. Mukhopadhyay,et al.  Finite element buckling analysis of stiffened plates , 1990 .

[64]  David Bushnell,et al.  Static collapse: A survey of methods and modes of behavior , 1985 .

[65]  G. H. Ferguson,et al.  A variable thickness, curved beam and shell stiffening element with shear deformations , 1979 .

[66]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[67]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[68]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2008 .