Shifted simplicial complexes are Laplacian integral

We show that the combinatorial Laplace operators associated to the boundary maps in a shifted simplicial complex have all integer spectra. We give a simple combinatorial interpretation for the spectra in terms of vertex degree sequences, generalizing a theorem of Merris for graphs. We also conjecture a majorization inequality for the spectra of these Laplace operators in an arbitrary simplicial complex, with equality achieved if and only if the complex is shifted. This generalizes a conjecture of Grone and Merris for graphs.

[1]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[2]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[3]  Alexander K. Kelmans,et al.  Laplacian Spectra and Spanning Trees of Threshold Graphs , 1996, Discret. Appl. Math..

[4]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[5]  R. Stanley Combinatorics and commutative algebra , 1983 .

[6]  Joel Friedman,et al.  On the Betti Numbers of Chessboard Complexes , 1998 .

[7]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[8]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[9]  Michelle L. Wachs,et al.  Combinatorial Laplacian of the Matching Complex , 2002, Electron. J. Comb..

[10]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[11]  A. Kelmans,et al.  A certain polynomial of a graph and graphs with an extremal number of trees , 1974 .

[12]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[13]  Robert Grone,et al.  Eigenvalues and the degree sequences of graphs , 1995 .

[14]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS. I , 1996 .

[15]  Ron M. Adin,et al.  Counting colorful multi-dimensional trees , 1992, Comb..

[16]  R. Merris Degree maximal graphs are Laplacian integral , 1994 .

[17]  Isabel Faria Multiplicity of integer roots of polynomials of graphs , 1995 .

[18]  Michael Doob,et al.  Spectra of graphs , 1980 .

[19]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[20]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[21]  Fan Chung Graham The Laplacian of a Hypergraph , 1992, Expanding Graphs.

[22]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[23]  U. Peled,et al.  The polytope of degree sequences , 1989 .

[24]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[25]  Victor Reiner,et al.  Combinatorial Laplacians of matroid complexes , 1999 .

[26]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[27]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[28]  R. Forman Combinatorial Differential Topology and Geometry , 1999 .

[29]  Gil Kalai,et al.  An extended Euler-Poincaré theorem , 1988 .

[30]  Gil Kalai,et al.  Enumeration ofQ-acyclic simplicial complexes , 1983 .