Approximating $(k,\ell)$-center clustering for curves
暂无分享,去创建一个
Joachim Gudmundsson | Maarten Löffler | Kevin Buchin | Irina Kostitsyna | Anne Driemel | Michael Horton | Joachim Gudmundsson | M. Löffler | K. Buchin | I. Kostitsyna | A. Driemel | M. Horton | Martijn Struijs | Maarten Loffler
[1] Julien Jacques,et al. Functional data clustering: a survey , 2013, Advances in Data Analysis and Classification.
[2] George L. Nemhauser,et al. Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..
[3] Pierre Gançarski,et al. A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..
[4] Marvin Künnemann,et al. Improved Approximation for Fréchet Distance on c-Packed Curves Matching Conditional Lower Bounds , 2014, Int. J. Comput. Geom. Appl..
[5] David H. Douglas,et al. ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .
[6] Christian Sohler,et al. Clustering time series under the Fréchet distance , 2015, SODA.
[7] Sergey Bereg,et al. Simplifying 3D Polygonal Chains Under the Discrete Fréchet Distance , 2008, LATIN.
[8] Esko Ukkonen,et al. The Shortest Common Supersequence Problem over Binary Alphabet is NP-Complete , 1981, Theor. Comput. Sci..
[9] Leonidas J. Guibas,et al. Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..
[10] Pierre Gançarski,et al. Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment , 2012, Theor. Comput. Sci..
[11] D. Biro,et al. Landscape complexity influences route-memory formation in navigating pigeons , 2014, Biology Letters.
[12] C. Abraham,et al. Unsupervised Curve Clustering using B‐Splines , 2003 .
[13] Michael Godau,et al. A Natural Metric for Curves - Computing the Distance for Polygonal Chains and Approximation Algorithms , 1991, STACS.
[14] Wolfgang Mulzer,et al. Approximability of the discrete Fréchet distance , 2015, J. Comput. Geom..
[15] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[16] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[17] Nabil H. Mustafa,et al. Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.
[18] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[19] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[20] Jeng-Min Chiou,et al. Functional clustering and identifying substructures of longitudinal data , 2007 .
[21] Roman Garnett,et al. Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using Gaussian processes , 2010, Journal of The Royal Society Interface.
[22] Maike Buchin,et al. A Middle Curve Based on Discrete Fréchet Distance , 2016, LATIN.
[23] Pankaj K. Agarwal,et al. Exact and Approximation Algortihms for Clustering , 1997 .
[24] Wolfgang Mulzer,et al. Four Soviets Walk the Dog: Improved Bounds for Computing the Fréchet Distance , 2012, Discret. Comput. Geom..
[25] Luis Angel García-Escudero,et al. A Proposal for Robust Curve Clustering , 2005, J. Classif..