FEM–BEM coupling for the large-body limit in micromagnetics

We present and analyze a coupled finite element–boundary element method for a model in stationary micromagnetics. The finite element part is based on mixed conforming elements. For two- and three-dimensional settings, we show well-posedness of the discrete problem and present an a priori error analysis for the case of lowest order elements.

[1]  Martin Costabel,et al.  Experimental convergence rates for various couplings of boundary and finite elements , 1991 .

[2]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[3]  Andreas Prohl,et al.  Numerical analysis of relaxed micromagnetics by penalised finite elements , 2001, Numerische Mathematik.

[4]  Helio J. C. Barbosa,et al.  Circumventing the Babuscka-Brezzi condition in mixed finite element approximations of elliptic variational inequalities , 1992 .

[5]  Andreas Prohl,et al.  Stabilization methods in relaxed micromagnetism , 2005 .

[6]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[7]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[8]  Jacobo Bielak,et al.  An exterior interface problem in two-dimensional elastodynamics , 1983 .

[9]  Wolfgang Dahmen,et al.  Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method , 2003, Math. Comput..

[10]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[11]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[12]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[13]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[14]  Carsten Carstensen,et al.  Numerical Analysis for a Macroscopic Model in Micromagnetics , 2004, SIAM J. Numer. Anal..

[15]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[16]  Jens Markus Melenk,et al.  MIXED CONFORMING ELEMENTS FOR THE LARGE-BODY LIMIT IN MICROMAGNETICS , 2014 .

[17]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[18]  Ivan G. Graham,et al.  Discrete boundary element methods on general meshes in 3D , 2000, Numerische Mathematik.

[19]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[22]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[23]  Dirk Praetorius,et al.  Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics , 2012, Numerische Mathematik.

[24]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[25]  W. Hackbusch,et al.  Finite elements on degenerate meshes: inverse-type inequalities and applications , 2005 .

[26]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[27]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .