Cosmochemical Estimates of Mantle Composition

[1]  D. L. Anderson Theory of Earth , 2014 .

[2]  S. Goldstein,et al.  Influence of Accretion on Lead in the Earth , 2013 .

[3]  D. Günther,et al.  Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies , 2012 .

[4]  D. Rubie,et al.  Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures - Implications for the origin of highly siderophile element concentrations in the Earth’s mantle , 2012 .

[5]  Andrew M. Davis,et al.  The proto-Earth as a significant source of lunar material , 2012 .

[6]  I. Campbell,et al.  Evidence against a chondritic Earth , 2012, Nature.

[7]  B. Bourdon,et al.  Silicon Isotope Evidence Against an Enstatite Chondrite Earth , 2012, Science.

[8]  H. O’Neill,et al.  Analysis of 60 elements in 616 ocean floor basaltic glasses , 2012 .

[9]  H. Becker,et al.  Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks , 2012 .

[10]  R. Wieler,et al.  Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth , 2011 .

[11]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[12]  Richard D. Starr,et al.  The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry , 2011, Science.

[13]  H. Palme,et al.  11. Moderately Volatile Elements , 2011 .

[14]  R. B. Georg,et al.  Silicon isotopes in meteorites and planetary core formation , 2011 .

[15]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[16]  W. Westrenen,et al.  Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution , 2011 .

[17]  A. Bischoff,et al.  The Rumuruti chondrite group , 2011 .

[18]  G. Caro Early Silicate Earth Differentiation , 2011 .

[19]  H. Paulick,et al.  The Earth’s tungsten budget during mantle melting and crust formation , 2011 .

[20]  M. Mezouar,et al.  Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history , 2011 .

[21]  F. Moynier,et al.  Isotopic Evidence of Cr Partitioning into Earth’s Core , 2011, Science.

[22]  H. Becker,et al.  Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths , 2011 .

[23]  L. Nittler,et al.  Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil -Implication for a late supernova injection into the Solar System , 2011, 1101.4949.

[24]  F. Nimmo,et al.  Heterogeneous accretion, composition and core–mantle differentiation of the Earth , 2011 .

[25]  S. Jacobsen,et al.  Silicon isotopes in the inner Solar System: Implications for core formation, solar nebular processes and partial melting , 2010 .

[26]  Geoffrey E. Hinton,et al.  Melting of Peridotite to 140 Gigapascals , 2010, Science.

[27]  J. Baker,et al.  High-precision Mg isotopic systematics of bulk chondrites , 2010 .

[28]  J. Eiler,et al.  NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES , 2010, 1007.4016.

[29]  G. Wasserburg,et al.  Ruthenium endemic isotope effects in chondrites and differentiated meteorites , 2010 .

[30]  B. Wood,et al.  The lead isotopic age of the Earth can be explained by core formation alone , 2010, Nature.

[31]  B. Bourdon,et al.  Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle–crust system , 2010 .

[32]  R. Carlson,et al.  Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth , 2010, Science.

[33]  A. Jambon,et al.  The chemical composition of the Earth: Enstatite chondrite models , 2010 .

[34]  R. Carlson,et al.  Contributors to chromium isotope variation of meteorites , 2010 .

[35]  D. Rubie,et al.  Evidence for high-pressure core-mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements , 2009 .

[36]  C. Manning,et al.  Spinel–olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth , 2009 .

[37]  Y. Fei,et al.  Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation , 2009 .

[38]  T. Kleine,et al.  Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core , 2009 .

[39]  P. Hoppe,et al.  DIRECT EVIDENCE FOR CONDENSATION IN THE EARLY SOLAR SYSTEM AND IMPLICATIONS FOR NEBULAR COOLING RATES , 2009 .

[40]  B. Kennett,et al.  Optimal equations of state for mantle minerals from simultaneous non-linear inversion of multiple datasets , 2009 .

[41]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[42]  H. Palme,et al.  The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: New evidence from in situ analyses of mantle xenoliths , 2009 .

[43]  F. Poitrasson,et al.  No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion , 2009 .

[44]  W. McDonough,et al.  The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .

[45]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[46]  H. Palme,et al.  Collisional erosion and the non-chondritic composition of the terrestrial planets , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  R. Carlson,et al.  Composition of the Earth's interior: the importance of early events , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  D. Kuzmin,et al.  The Earth’s missing lead may not be in the core , 2008, Nature.

[49]  R. Walker Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation , 2008 .

[50]  R. Carlson,et al.  Silver isotope variations in chondrites: Volatile depletion and the initial 107Pd abundance of the solar system , 2008 .

[51]  C. Göpel,et al.  53Mn–53Cr systematics of the early Solar System revisited , 2008 .

[52]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[53]  K. Righter,et al.  Partitioning of palladium at high pressures and temperatures during core formation , 2008 .

[54]  D. Rubie,et al.  New Ni and Co metal-silicate partitioning data and their relevance for an early terrestrial magma ocean , 2008 .

[55]  P. Warren A depleted, not ideally chondritic bulk Earth : The explosive-volcanic basalt loss hypothesis , 2008 .

[56]  B. Bourdon,et al.  Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon , 2008, Nature.

[57]  Shan Gao,et al.  Upper crustal abundances of trace elements: A revision and update , 2007 .

[58]  F. Moynier,et al.  Dating the First Stage of Planet Formation , 2007 .

[59]  A. Hofmann,et al.  Depth of formation of subcontinental off-craton peridotites , 2007 .

[60]  J. Shelley,et al.  Geo- and cosmochemistry of the twin elements yttrium and holmium , 2007 .

[61]  J. Zipfel,et al.  Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs , 2007 .

[62]  R. Andreasen,et al.  Mixing and Homogenization in the Early Solar System: Clues from Sr, Ba, Nd, and Sm Isotopes in Meteorites , 2007 .

[63]  R. B. Georg,et al.  Silicon in the Earth’s core , 2007, Nature.

[64]  R. Carlson,et al.  Chondrite Barium, Neodymium, and Samarium Isotopic Heterogeneity and Early Earth Differentiation , 2007, Science.

[65]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 1. Method and results , 2007 .

[66]  F. Blanckenburg,et al.  Modes of planetary-scale Fe isotope fractionation , 2006 .

[67]  A. Shukolyukov,et al.  Manganese–chromium isotope systematics of carbonaceous chondrites , 2006 .

[68]  R. Carlson,et al.  A new geochemical model for the Earth's mantle inferred from 146Sm–142Nd systematics , 2006 .

[69]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[70]  R. Walker,et al.  Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths , 2006 .

[71]  U. Wiechert,et al.  Non-chondritic magnesium and the origins of the inner terrestrial planets , 2006 .

[72]  D. Günther,et al.  Nucleosynthetic zirconium isotope anomalies in acid leachates of carbonaceous chondrites , 2005 .

[73]  B. Wood,et al.  Cooling of the Earth and core formation after the giant impact , 2005, Nature.

[74]  M. Zolensky,et al.  Osmium Isotope Evidence for an s-Process Carrier in Primitive Chondrites , 2005, Science.

[75]  B. Wood,et al.  Core formation and the oxidation state of the Earth , 2005 .

[76]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[77]  F. Podosek Early solar system timescales , 2005 .

[78]  M. Chaussidon,et al.  A non-terrestrial 16O-rich isotopic composition for the protosolar nebula , 2005, Nature.

[79]  B. Wood,et al.  Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir , 2005 .

[80]  Y. Lahaye,et al.  Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes , 2004 .

[81]  Andrew M. Davis,et al.  The cosmic molybdenum–ruthenium isotope correlation , 2004 .

[82]  F. Poitrasson,et al.  Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms , 2004 .

[83]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[84]  E. Scott,et al.  Classification of Meteorites , 2003 .

[85]  W. McDonough,et al.  Compositional Model for the Earth's Core , 2003 .

[86]  D. Pearson,et al.  Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds , 2003 .

[87]  K. Righter METAL-SILICATE PARTITIONING OF SIDEROPHILE ELEMENTS AND CORE FORMATION IN THE EARLY EARTH* , 2003 .

[88]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[89]  J. Lorand,et al.  Sulfur and selenium systematics of the subcontinental lithospheric mantle: Inferences from the Massif Central xenolith suite (France) , 2003 .

[90]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[91]  T. Kleine,et al.  Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics , 2003, Science.

[92]  J. Morgan,et al.  Highly siderophile elements in chondrites , 2003 .

[93]  John H. Jones,et al.  Signatures of the highly siderophile elements in the SNC meteorites and Mars: a review and petrologic synthesis , 2003 .

[94]  W. Benz,et al.  Evidence for Collisional Erosion of the Earth , 2003 .

[95]  J. Morgan,et al.  Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes , 2002 .

[96]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[97]  M. Rehkämper,et al.  Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS , 2002 .

[98]  S. Taylor,et al.  The Bulk Composition of the Moon , 2002 .

[99]  O. Anderson,et al.  Another look at the core density deficit of Earth’s outer core , 2002 .

[100]  I. Campbell Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle , 2002 .

[101]  D. B. Clarke,et al.  SELENIUM, TELLURIUM, ARSENIC AND ANTIMONY CONTENTS OF PRIMARY MANTLE SULFIDES , 2002 .

[102]  Kevin Righter,et al.  Determining the composition of the Earth , 2002, Nature.

[103]  D. Porcelli,et al.  In search of lost planets – the paleocosmochemistry of the inner solar system , 2001 .

[104]  L. Taylor,et al.  Oxygen Isotopes and the Moon-Forming Giant Impact , 2001, Science.

[105]  B. Marty,et al.  Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula , 2001, astro-ph/0109549.

[106]  J. Morgan,et al.  Siderophile elements in Earth's upper mantle and lunar breccias: Data synthesis suggests manifestations of the same late influx , 2001 .

[107]  G. Lugmair,et al.  Mn- Cr Isotope Systematics in Bulk Samples of the Carbonaceous Chondrites , 2001 .

[108]  J. Chambers Making More Terrestrial Planets , 2001 .

[109]  D. Lindstrom,et al.  Manganese‐chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites , 2001 .

[110]  H. Palme,et al.  The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus , 2001 .

[111]  B. Wood,et al.  The Earth's ‘missing’ niobium may be in the core , 2001, Nature.

[112]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[113]  C. Langmuir,et al.  Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: Implications for chalcophile element fractionation in the Earth , 2000 .

[114]  P. Sylvester,et al.  Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum , 2000, Nature.

[115]  B. Kamber,et al.  Role of ‘hidden’ deeply subducted slabs in mantle depletion , 2000 .

[116]  A. Woodland,et al.  The distribution of lithium in peridotitic and pyroxenitic mantle lithologies — an indicator of magmatic and metasomatic processes , 2000 .

[117]  H. Palme Are There Chemical Gradients in the Inner Solar System? , 2000 .

[118]  K. Kratz,et al.  Are highly siderophile elements PGE, Re and Au fractionated in the upper mantle of the earth? New results on peridotites from Zabargad , 2000 .

[119]  J. Fitton,et al.  Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: petrogenetic signature of melt percolation? , 1999 .

[120]  G. J. Taylor Origin of the Earth and Moon , 1998 .

[121]  G. Lugmair,et al.  Early solar system timescales according to 53Mn-53Cr systematics , 1998 .

[122]  Benren Zhang,et al.  Chemical composition of the continental crust as revealed by studies in East China , 1998 .

[123]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[124]  G. Schmidt,et al.  Constraints on Earth accretion deduced from noble metals in the oceanic mantle , 1998, Nature.

[125]  Dawson,et al.  Platinum-group element abundance patterns in different mantle environments , 1997, Science.

[126]  H. Palme,et al.  Experimental determination of the solubility of platinum in silicate melts , 1997 .

[127]  C. Neal,et al.  Thoroughly anomalous chromium in Orgueil , 1997 .

[128]  A. Hofmann,et al.  Constraints on earth evolution from antimony in mantle-derived rocks , 1997 .

[129]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[130]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[131]  F. Albarède,et al.  The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system , 1997 .

[132]  J. Morgan,et al.  The osmium isotopic composition of the Earth's primitive upper mantle , 1996, Nature.

[133]  U. Marvin Ernst Florens Friedrich Chladni (1756–1827) and the origins of modern meteorite research , 1996 .

[134]  J. Lorand,et al.  Non-chondritic platinum-group element ratios in the Earth's mantle , 1996, Nature.

[135]  G. Dreibus,et al.  Cosmochemical constraints on the sulfur content in the Earth's core , 1996 .

[136]  H. Newsom,et al.  The depletion of tungsten in the bulk silicate earth: Constraints on core formation , 1996 .

[137]  H. Palme,et al.  The influence of FeO on the solubilities of cobalt and nickel in silicate melts , 1996 .

[138]  H. Newsom,et al.  The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron , 1996 .

[139]  G. Dreibus,et al.  Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle , 1995 .

[140]  J. Fitton Coupled molybdenum and niobium depletion in continental basalts , 1995 .

[141]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .

[142]  Jutta Zipfel,et al.  Sulfur and selenium in chondritic meteorites , 1995 .

[143]  D. Dingwell,et al.  Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle's early history , 1995 .

[144]  K. Jochum,et al.  Fractionation of volatile elements in the early solar system: evidence from heating experiments on primitive meteorites , 1995 .

[145]  W. McDonough An Explanation for the Abundance Enigma of the Highly Siderophile Elements in the Earth's Mantle , 1995 .

[146]  G. Wetherill,et al.  Provenance of the terrestrial planets. , 1994, Geochimica et cosmochimica acta.

[147]  J. Poirier Light elements in the Earth's outer core: A critical review , 1994 .

[148]  E. Stolper,et al.  Determining the composition of high-pressure mantle melts using diamond aggregates , 1994 .

[149]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[150]  W. McDonough,et al.  Ferric iron in peridotites and mantle oxidation states , 1994 .

[151]  R. C. Howe,et al.  Volcanism on the Terrestrial Planets , 1994 .

[152]  A. Jambon,et al.  Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications , 1994 .

[153]  A. Hofmann,et al.  Tin in mantle-derived rocks: Constraints on Earth evolution , 1993 .

[154]  Youxue Zhang,et al.  Distribution and evolution of carbon and nitrogen in Earth , 1993 .

[155]  H. Palme,et al.  Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites , 1993 .

[156]  K. Jochum,et al.  Th, U and other trace elements in carbonaceous chondrites: Implications for the terrestrial and solar-systemTh/U ratios , 1993 .

[157]  D. Stevenson,et al.  SUSPENSION IN CONVECTIVE LAYERS AND STYLE OF DIFFERENTIATION OF A TERRESTRIAL MAGMA OCEAN , 1993 .

[158]  J. Jones,et al.  Siderophile Elements and the Earth's Formation. , 1992, Science.

[159]  J. Birck,et al.  Clues to early Solar System history from chromium isotopes in carbonaceous chondrites , 1992, Nature.

[160]  T. Ireland,et al.  Evidence for distillation in the formation of HAL and related hibonite inclusions , 1992 .

[161]  A. Hofmann,et al.  Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth , 1992 .

[162]  G. Dreibus,et al.  Iodine abundances in oceanic basalts: implications for Earth dynamics , 1992 .

[163]  A. E. Ringwood,et al.  Phase transformations and their bearing on the constitution and dynamics of the mantle , 1991 .

[164]  V. Murthy Early Differentiation of the Earth and the Problem of Mantle Siderophile Elements: A New Approach , 1991, Science.

[165]  H. O’Neill The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon , 1991 .

[166]  H. Palme,et al.  Variations in the Iridium Content of the Upper Mantle of the Earth , 1991 .

[167]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[168]  W. McDonough Constraints on the composition of the continental lithospheric mantle , 1990 .

[169]  J. Lorand Are spinel Iherzolite xenoliths representative of the abundance of sulfur in the upper mantle , 1990 .

[170]  H. Palme,et al.  Siderophile Elements in the Primitive Upper Mantle , 1990 .

[171]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[172]  A. E. Ringwood,et al.  Significance of the terrestrial Mg/Si ratio , 1989 .

[173]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[174]  W. McDonough,et al.  Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths , 1989, Nature.

[175]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[176]  A. E. Ringwood,et al.  Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle , 1988 .

[177]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[178]  L. Grossman :Meteorites: Their Record of Early Solar-System History , 1987 .

[179]  C. Langmuir,et al.  The systematics of lithium abundances in young volcanic rocks , 1987 .

[180]  S. Hart,et al.  In search of a bulk-Earth composition , 1986 .

[181]  J. Burke Cosmic Debris: Meteorites in History , 1986 .

[182]  J. Morgan Ultramafic xenoliths: Clues to Earth's late accretionary history , 1986 .

[183]  G. Sigvaldason,et al.  Fluorine in basalts from Iceland , 1986 .

[184]  B. Dupré,et al.  Thorium/uranium ratio of the Earth☆ , 1986 .

[185]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[186]  H. Stockman,et al.  The Ronda high temperature peridotite: Geochemistry and petrogenesis , 1985 .

[187]  K. Nickel,et al.  CaAl ratio and composition of the Earth's upper mantle , 1985 .

[188]  W. McDonough,et al.  Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implications for the evolution of the sub-continental lithosphere , 1985 .

[189]  J. Wasson Meteorites: Their Record of Early Solar-System History , 1985 .

[190]  G. Wasserburg,et al.  Absolute isotopic abundances of Ti in meteorites , 1985 .

[191]  A. E. Ringwood,et al.  The Bakerian Lecture, 1983 - The Earth’s core: its composition, formation and bearing upon the origin of the Earth , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[192]  G. Garuti,et al.  Sulfide mineralogy and chalcophile and siderophile element abundances in the Ivrea-Verbano mantle peridotites (Western Italian Alps) , 1984 .

[193]  S. Niemeyer,et al.  Titanium isotopic anomalies in meteorites , 1984 .

[194]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[195]  J. Morgan,et al.  Enstatite chondrites: Trace element clues to their origin , 1983 .

[196]  A. Hofmann,et al.  Ba, Rb and Cs in the Earth's Mantle , 1983 .

[197]  F. J. Flanagan,et al.  Mercury in Geologic Reference Samples , 1982 .

[198]  G. A. Wandless,et al.  Composition of the earth's upper mantle. I - Siderophile trace elements in ultramafic nodules , 1981 .

[199]  J. Dawson,et al.  Storage of F and Cl in the upper mantle: geochemical implications , 1981 .

[200]  H. Palme,et al.  Trace elements in ocean ridge basalt glasses - Implications for fractionations during mantle evolution and petrogenesis , 1980 .

[201]  F. Begemann Isotopic anomalies in meteorites , 1980 .

[202]  S. Brush Discovery of the Earth’s core , 1980 .

[203]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[204]  A. E. Ringwood,et al.  Composition of the core and implications for origin of the earth. , 1977 .

[205]  W. M. Kaula,et al.  Basaltic volcanism on the terrestrial planets. , 1977 .

[206]  H. Palme,et al.  A metal particle from a Ca,Al-rich inclusion from the meteorite Allende, and the condensation of refractory siderophile elements , 1976 .

[207]  D. Green,et al.  The mineralogy, geochemistry and origin of Iherzolite inclusions in Victorian basanites , 1974 .

[208]  E. Anders,et al.  Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon , 1974 .

[209]  C. Chou,et al.  Fractionation of moderately volatile elements in ordinary chondrites , 1974 .

[210]  R. Allen,et al.  Minor and trace elements in some meteoritic minerals , 1973 .

[211]  J. P. Willis,et al.  THE CHEMICAL COMPOSITION OF KAINSAZ AND EFREMOVKA , 1973 .

[212]  J. Morgan,et al.  Chemical fractionations in meteorites. V - Volatile and siderophile elements in achondrites and ocean ridge basalts. , 1972 .

[213]  E. Anders,et al.  Chemical fractionations in meteorites—IV abundances of fourteen trace elements in L-chondrites; implications for cosmothermometry , 1971 .

[214]  B. Mason Composition of the Earth , 1966, Nature.

[215]  P. Blackett,et al.  Constitution of the Terrestrial Planets , 1948, Nature.

[216]  H. N. Russell The Cosmical Abundance of the Elements , 1941, Nature.

[217]  V. Goldschmidt The Distribution of the Chemical Elements , 1929, Nature.

[218]  V. Goldschmidt Über die Massenverteilung im Erdinneren, verglichen mit der Struktur gewisser Meteoriten , 1922, Naturwissenschaften.

[219]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[220]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[221]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[222]  J. Bodinier,et al.  Orogenic, ophiolitic and abyssal peridotites , 2014 .

[223]  H. Becker,et al.  Rhodium, gold and other highly siderophile element abundances in chondritic meteorites , 2010 .

[224]  R. Clayton,et al.  Oxygen Isotopic Composition and Chemical Correlations in Meteorites and the Terrestrial Planets , 2008 .

[225]  R. T. Helz,et al.  Iron Isotope Fractionation During Planetary Differentiation , 2008 .

[226]  P. Buseck,et al.  Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites , 2001 .

[227]  W. Ertel,et al.  Siderophile Elements in the Earth and Moon: Metal/Silicate Partitioning and Implications for Core Formation , 2000 .

[228]  Jiabo Li,et al.  An Experimental Perspective on the Light Element in Earth's Core , 2000 .

[229]  G. Dreibus,et al.  Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: Implications for Re-Os systematics , 1999 .

[230]  R. Canup,et al.  Accretion of the Terrestrial Planets and the Earth-Moon System , 1998 .

[231]  I. Jackson,et al.  The Earth's Mantle: Composition and Temperature of the Earth's Mantle: Seismological Models Interpreted through Experimental Studies of Earth Materials , 1998 .

[232]  H. Palme,et al.  The Earth's Mantle: Composition of the Silicate Earth: Implications for Accretion and Core Formation , 1998 .

[233]  D. Lauretta,et al.  THE COSMOCHEMICAL BEHAVIOR OF BERYLLIUM AND BORON , 1997 .

[234]  A. Basu,et al.  Earth Processes: Reading the Isotopic Code: Basu/Earth Processes: Reading the Isotopic Code , 1996 .

[235]  H. Palme,et al.  Solubility of palladium in silicate melts: Implications for core formation in the Earth , 1994 .

[236]  C. Langmuir,et al.  Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges , 1992 .

[237]  H. O'neill Siderophile Elements and the Earth's Formation. , 1992, Science.

[238]  J. Sinton,et al.  Mantle Flow and Melt Generation at Mid-Ocean Ridges , 1992 .

[239]  A. Hofmann,et al.  Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia , 1991 .

[240]  J. Lorand Sulphide Petrology and Sulphur Geochemistry of Orogenic Lherzolites: A Comparative Study of the Pyrenean Bodies (France) and the Lanzo Massif (Italy) , 1991 .

[241]  H. Melosh,et al.  The physics of crystal settling and suspension in a turbulent magma ocean. , 1990 .

[242]  H. Newsom,et al.  Chemical fractionation during formation of the Earth's core and continental crust: clues from As, Sb, W, and Mo. , 1990 .

[243]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[244]  H. Palme,et al.  Moderately volatile elements. , 1988 .

[245]  J. Larimer The cosmochemical classification of the elements. , 1988 .

[246]  R. Gottlob,et al.  Methods and Results , 1986 .

[247]  J. Morgan,et al.  H-chondrites - Trace element clues to their origin , 1985 .

[248]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[249]  H. Wänke,et al.  Mantle Chemistry and Accretion History of the Earth , 1984 .

[250]  K. Nickel,et al.  The Nature of the Upper-Most Mantle Beneath Victoria, Australia as Deduced from UL Tramafic Xenoliths , 1984 .

[251]  A. Irving Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle , 1980 .

[252]  Alfred Edward Ringwood,et al.  Origin of the Earth and Moon , 1979 .

[253]  C. Chou Fractionation of siderophile elements in the Earth''s upper mantle , 1978 .

[254]  J. Morgan,et al.  Further studies of trace elements in C3 chondrites , 1978 .

[255]  K. Aoki,et al.  The major element composition of the upper mantle estimated from the composition of lherzolites , 1977 .

[256]  H. Waenke,et al.  On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the moon , 1977 .

[257]  Robert Zannetti,et al.  Landolt-bornstein, new series , 1974 .

[258]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[259]  K. Turekian,et al.  Inhomogeneous accumulation of the earth from the primitive solar nebula. , 1969 .

[260]  D. L. Anderson,et al.  The composition of the terrestrial planets , 1967 .

[261]  D. J. DEPAOLOt Models of earth structure inferred from neodymium and strontium isotopic abundances , 2022 .