Fixed points of Sturmian morphisms and their derivated words

Abstract Any infinite uniformly recurrent word u can be written as concatenation of a finite number of return words to a chosen prefix w of u. Ordering of the return words to w in this concatenation is coded by derivated word d u ( w ) . In 1998, Durand proved that a fixed point u of a primitive morphism has only finitely many derivated words d u ( w ) and each derivated word d u ( w ) is fixed by a primitive morphism as well. In our article we focus on Sturmian words fixed by a primitive morphism. We provide an algorithm which to a given Sturmian morphism ψ lists the morphisms fixing the derivated words of the Sturmian word u = ψ ( u ) . We provide a sharp upper bound on length of the list.

[1]  Edita Pelantová,et al.  Sturmian jungle (or garden?) on multiliteral alphabets , 2010, RAIRO Theor. Informatics Appl..

[2]  Luca Q. Zamboni,et al.  Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.

[3]  Christophe Reutenauer,et al.  Acyclic, connected and tree sets , 2013, Monatshefte für Mathematik.

[4]  Gwénaël Richomme Conjugacy and episturmian morphisms , 2003, Theor. Comput. Sci..

[5]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[6]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[7]  Véronique Bruyère,et al.  Words derivated from Sturmian words , 2005, Theor. Comput. Sci..

[8]  Laurent Vuillon,et al.  A Characterization of Sturmian Words by Return Words , 2001, Eur. J. Comb..

[9]  Patrice Séébold,et al.  Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..

[10]  Jean Berstel,et al.  Sturmian and Episturmian Words , 2007, CAI.

[11]  Christophe Reutenauer,et al.  Sturmian morphisms, the braid group B4, Christoffel words and bases of F2 , 2007 .

[12]  Julien Cassaigne,et al.  C O ] 1 0 Ju l 2 01 7 A Set of Sequences of Complexity 2 n + 1 , 2018 .

[13]  Giuseppe Pirillo,et al.  Episturmian words and episturmian morphisms , 2002, Theor. Comput. Sci..

[14]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[15]  Alessandro De Luca,et al.  On a Family of Morphic Images of Arnoux-Rauzy Words , 2009, LATA.

[16]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[17]  Edita Pelantová,et al.  Sequences with constant number of return words , 2006, ArXiv.

[18]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[19]  Florin Manea,et al.  Equations Enforcing Repetitions Under Permutations , 2017, WORDS.