Engaging with the Canopy - Multi-Dimensional Vegetation Mark Visualisation Using Archived Aerial Images

Using Montarice in central Adriatic Italy as a case study, this paper focuses on the extraction of the spectral (i.e., plant colour) and geometrical (i.e., plant height) components of a crop canopy from archived aerial photographs, treating both parameters as proxies for archaeological prospection. After the creation of orthophotographs and a canopy height model using image-based modelling, new archaeological information is extracted from this vegetation model by applying relief-enhancing visualisation techniques. Through interpretation of the resulting data, a combination of the co-registered spectral and geometrical vegetation dimensions clearly add new depth to interpretative mapping, which is typically based solely on colour differences in orthophotographs.

[1]  T. Pock,et al.  Point Clouds: Lidar versus 3D Vision , 2010 .

[2]  Juliane Bendig,et al.  UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability , 2013 .

[3]  Y. Miao,et al.  Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring In Northeast China , 2013 .

[4]  John P. Wilson,et al.  Terrain analysis : principles and applications , 2000 .

[5]  M. Shirasawa,et al.  Visualizing topography by openness: A new application of image processing to digital elevation models , 2002 .

[6]  M. Rothermel,et al.  Oblique Image Data Processing – Potential , Experiences and Recommendations , 2013 .

[7]  Doreen S. Boyd,et al.  Airborne LiDAR for the Detection of Archaeological Vegetation Marks Using Biomass as a Proxy , 2015, Remote. Sens..

[8]  M. Lo Brutto,et al.  UAV Systems for Photogrammetric Data Acquisition of Archaeological Sites , 2012 .

[9]  M. Rothermel,et al.  SURE – The ifp Software for Dense Image Matching , 2013 .

[10]  Anatoly A. Gitelson,et al.  Why and What for the Leaves Are Yellow in Autumn? On the Interpretation of Optical Spectra of Senescing Leaves (Acerplatanoides L.)* , 1995 .

[11]  S. Crutchley,et al.  THE LIGHT FANTASTIC: USING AIRBORNE LIDAR IN ARCHAEOLOGICAL SURVEY , 2010 .

[12]  Ross A. Hill,et al.  A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data , 2012 .

[13]  Keith Challis,et al.  Immersive visualisation of survey and laser scanning:: the case for using computer game engines , 2013 .

[14]  B. Andrieu,et al.  Computer stereo plotting for 3-D reconstruction of a maize canopy , 1995 .

[15]  Corrine Coakley,et al.  Interpreting archaeological topography: 3D data, visualization and observation , 2014 .

[16]  C. Briese,et al.  Airborne laser bathymetry – detecting and recording submerged archaeological sites from the air , 2013 .

[17]  Geert Verhoeven,et al.  Near-Infrared Aerial Crop Mark Archaeology: From its Historical Use to Current Digital Implementations , 2012 .

[18]  F. Vermeulen Fotografia aerea finalizzata nelle Marche centrali: un progetto integrato , 2004 .

[19]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[20]  William D. Philpot,et al.  Yellowness index: An application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation , 1999 .

[21]  G. Verhoeven,et al.  The integration of Aerial Photography and GIS in the Potenza Valley Survey , 2005 .

[22]  Stanley B. Brown,et al.  THE DEGRADATION OF CHLOROPHYLL - A BIOLOGICAL ENIGMA. , 1987, The New phytologist.

[23]  K. Wenzel,et al.  A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs , 2013 .

[24]  Fabio Remondino,et al.  UAV PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING - CURRENT STATUS AND FUTURE PERSPECTIVES - , 2012 .

[25]  C. Sevara Top Secret Topographies: Recovering Two and Three-Dimensional Archaeological Information from Historic Reconnaissance Datasets Using Image-Based Modelling Techniques: , 2013 .

[26]  Žiga Kokalj,et al.  Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models , 2011, Antiquity.

[27]  Andrew J. Young,et al.  Carotenoids and stress , 1990 .

[28]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[29]  Dawn Youngblood,et al.  Cartographic Relief Presentation , 2010 .

[30]  G. Verhoeven,et al.  The Potenza Valley Survey , 2001 .

[31]  Paolo Forlin,et al.  A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data , 2011 .

[32]  Geert Verhoeven,et al.  BRDF and its Impact on Aerial Archaeological Photography , 2017 .

[33]  K. Moffett,et al.  Remote Sens , 2015 .

[34]  N. Haala The Landscape of Dense Image Matching Algorithms , 2013 .

[35]  Sakari Tuominen,et al.  Forest variable estimation using a high-resolution digital surface model , 2012 .

[36]  C. S. French,et al.  THE ABSORPTION AND REFLECTION SPECTRA OF LEAVES, CHLOROPLAST SUSPENSIONS, AND CHLOROPLAST FRAGMENTS AS MEASURED IN AN ULBRICHT SPHERE , 1946 .

[37]  Geert Verhoeven,et al.  The contribution of aerial photography and field survey to the study of urbanization in the Potenza valley (Picenum) , 2004, Journal of Roman Archaeology.

[38]  Christopher Sevara,et al.  Capturing the Past for the Future: an Evaluation of the Effect of Geometric Scan Deformities on the Performance of Aerial Archival Media in Image‐based Modelling Environments , 2016 .

[39]  Michael Doneus,et al.  Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models , 2013, Remote. Sens..

[40]  Geert Verhoeven Beyond conventional boundaries: new technologies, methodologies, and procedures for the benefit of aerial archaeological data acquisition and analysis , 2009 .

[41]  Adam J. Mathews,et al.  Assessment of Image-Based Point Cloud Products to Generate a Bare Earth Surface and Estimate Canopy Heights in a Woodland Ecosystem , 2016, Remote. Sens..

[42]  Klemen Zaksek,et al.  Sky-View Factor as a Relief Visualization Technique , 2011, Remote. Sens..

[43]  R. Goossens,et al.  The Potenza Valley Survey: Preliminary Report on Field Campaign 2003 , 2001 .

[44]  Geert Verhoeven,et al.  Taking computer vision aloft – archaeological three‐dimensional reconstructions from aerial photographs with photoscan , 2011 .

[45]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  F. Vermeulen,et al.  Geo-archaeological implications of river and coastal dynamics at the Potenza river mouth (The Marches, Italy) , 2009 .

[47]  Camillo Ressl,et al.  Undistorting the past: new techniques for orthorectification of archaeological aerial frame imagery , 2013 .

[48]  Geert Verhoeven,et al.  PIXEL-LEVEL IMAGE FUSION FOR ARCHAEOLOGICAL INTERPRETATIVE MAPPING , 2016 .

[49]  F. Vermeulen,et al.  Catalogazione dei siti archeologici , 2006 .

[50]  C. Briese,et al.  Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .

[51]  E. B. Knipling Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation , 1970 .

[52]  Dirk Hoffmeister,et al.  High-resolution Crop Surface Models (CSM) and Crop Volume Models (CVM) on field level by terrestrial laser scanning , 2009, International Symposium on Digital Earth.

[53]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[54]  Randolph H. Wynne,et al.  Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .

[55]  R. Hesse,et al.  LiDAR‐derived Local Relief Models – a new tool for archaeological prospection , 2010 .

[56]  Frank Vermeulen,et al.  Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs , 2012 .

[57]  Geert Verhoeven,et al.  COMPUTER VISION‐BASED ORTHOPHOTO MAPPING OF COMPLEX ARCHAEOLOGICAL SITES: THE ANCIENT QUARRY OF PITARANHA (PORTUGAL–SPAIN) , 2012 .