Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System

[1]  J. Hirsh,et al.  Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes , 2005, Journal of Biological Chemistry.

[2]  Zhefeng Gong,et al.  Two Interdependent TRPV Channel Subunits, Inactive and Nanchung, Mediate Hearing in Drosophila , 2004, The Journal of Neuroscience.

[3]  Emily Hare,et al.  Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis , 2004, BMC Evolutionary Biology.

[4]  A. Lange,et al.  Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts. , 2004, Journal of insect physiology.

[5]  M. Monastirioti Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. , 2003, Developmental biology.

[6]  M. Coton,et al.  The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. , 2003, FEMS microbiology letters.

[7]  Ronald L. Davis,et al.  Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. , 2003, Developmental biology.

[8]  M. Heisenberg,et al.  Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila , 2003, The Journal of Neuroscience.

[9]  T. Roeder,et al.  Tyramine and octopamine: antagonistic modulators of behavior and metabolism. , 2003, Archives of insect biochemistry and physiology.

[10]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[11]  Beibei Zhao,et al.  Reversal Frequency in Caenorhabditis elegans Represents an Integrated Response to the State of the Animal and Its Environment , 2003, The Journal of Neuroscience.

[12]  T. Utsumi,et al.  B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase , 2003, Insect molecular biology.

[13]  E. M. Blumenthal Regulation of chloride permeability by endogenously produced tyramine in the Drosophila Malpighian tubule. , 2003, American journal of physiology. Cell physiology.

[14]  T. Branchek,et al.  Trace amine receptors as targets for novel therapeutics: legend, myth and fact. , 2003, Current opinion in pharmacology.

[15]  Leon Avery,et al.  Serotonin regulates repolarization of the C. elegans pharyngeal muscle , 2003, Journal of Experimental Biology.

[16]  A. Komatsu,et al.  A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster , 2002, Neuroscience Letters.

[17]  R. Komuniecki,et al.  Characterization of a tyramine receptor from Caenorhabditis elegans , 2002, Journal of Neurochemistry.

[18]  A. Barron,et al.  Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera) , 2002, Journal of Comparative Physiology A.

[19]  C. Sotelo,et al.  Neuronal promoter of human aromatic L-amino acid decarboxylase gene directs transgene expression to the adult floor plate and aminergic nuclei induced by the isthmus. , 2001, Brain research. Molecular brain research.

[20]  C. Franks,et al.  Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. , 2001, Journal of neurobiology.

[21]  V. Malashkevich,et al.  Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase , 2001, Nature Structural Biology.

[22]  A. V. Maricq,et al.  The C. elegans Glutamate Receptor Subunit NMR-1 Is Required for Slow NMDA-Activated Currents that Regulate Reversal Frequency during Locomotion , 2001, Neuron.

[23]  Beth Borowsky,et al.  Trace amines: Identification of a family of mammalian G protein-coupled receptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Day,et al.  IDA‐1, a Caenorhabditis elegans homolog of the diabetic autoantigens IA‐2 and phogrin, is expressed in peptidergic neurons in the worm , 2001, The Journal of comparative neurology.

[25]  H. Horvitz,et al.  MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans , 2000, Nature.

[26]  M. Dong,et al.  Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed. , 2000, Genes & development.

[27]  P. Facchini,et al.  Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. , 2000, Phytochemistry.

[28]  D. Yamamoto,et al.  A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. , 2000, Gene.

[29]  A. Baumann,et al.  Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. , 2000, Journal of neurochemistry.

[30]  G. Ruvkun,et al.  Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant , 2000, Nature.

[31]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[32]  A. V. Maricq,et al.  Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor , 1999, Neuron.

[33]  J. Hirsh,et al.  The trace amine tyramine is essential for sensitization to cocaine in Drosophila , 1999, Current Biology.

[34]  D. Hall,et al.  Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. , 1999, Developmental biology.

[35]  E. Jorgensen,et al.  UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. , 1999, Molecular biology of the cell.

[36]  Janet S. Duerr,et al.  The cat-1 Gene of Caenorhabditis elegansEncodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors , 1999, The Journal of Neuroscience.

[37]  M. Nonet,et al.  The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. , 1998, Molecular biology of the cell.

[38]  M. Hammer,et al.  Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. , 1998, Learning & memory.

[39]  B. Ye,et al.  unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. , 1998, Development.

[40]  R. Plasterk,et al.  Reverse genetics by chemical mutagenesis in Caenorhabditis elegans , 1997, Nature Genetics.

[41]  J. White,et al.  Morphogenesis of the C. elegans hermaphrodite uterus. , 1996, Development.

[42]  M. Monastirioti,et al.  Characterization of Drosophila Tyramine β-HydroxylaseGene and Isolation of Mutant Flies Lacking Octopamine , 1996, The Journal of Neuroscience.

[43]  H. Horvitz,et al.  EGL-10 Regulates G Protein Signaling in the C. elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins , 1996, Cell.

[44]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[45]  B. Burrell,et al.  Modulation of the honey bee (Apis mellifera) sting response by octopamine , 1995 .

[46]  A. De Loof,et al.  Characterization of a Cloned Locust Tyramine Receptor cDNA by Functional Expression in Permanently Transformed Drosophila S2 Cells , 1995, Journal of neurochemistry.

[47]  M. Monastirioti,et al.  Octopamine immunoreactivity in the fruit fly Drosophila melanogaster , 1995, The Journal of comparative neurology.

[48]  P. Stevenson,et al.  Localization of octopaminergic neurones in insects. , 1995, Comparative biochemistry and physiology. Part A, Physiology.

[49]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[50]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[51]  H. Horvitz,et al.  The GABAergic nervous system of Caenorhabditis elegans , 1993, Nature.

[52]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[53]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Jan-Marino Ramirez,et al.  A Multifunctional Role for Octopamine in Locust Flight , 1993 .

[55]  C. Li,et al.  Localization of FMRF amide‐like peptides in Caenorhabditis elegans , 1992, The Journal of comparative neurology.

[56]  G. Hoyle,et al.  The dopamine β-hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in adult transgenic mice , 1991, Neuron.

[57]  R. Strange,et al.  Carbonmonoxy dopamine beta-hydroxylase. Structural characterization by Fourier transform infrared, fluorescence, and x-ray absorption spectroscopy. , 1991, The Journal of biological chemistry.

[58]  D. Hall,et al.  Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans , 1991, Cell.

[59]  A. Otsuka,et al.  The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein , 1991, Neuron.

[60]  E. Borrelli,et al.  Cloning and characterization of a Drosophila tyramine receptor. , 1990, The EMBO journal.

[61]  Cori Bargmann,et al.  Chemosensory cell function in the behavior and development of Caenorhabditis elegans. , 1990, Cold Spring Harbor symposia on quantitative biology.

[62]  M. Chalfie,et al.  The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. , 1989, Genes & development.

[63]  L. Avery,et al.  Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans , 1989, Neuron.

[64]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[65]  H. Horvitz,et al.  A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons , 1988, Nature.

[66]  E. Kravitz Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. , 1988, Science.

[67]  D. Mullins,et al.  Quantitative high-performance thin-layer chromatography of dansyl derivatives of biogenic amines. , 1988, Analytical biochemistry.

[68]  J. Mallet,et al.  The primary structure of human dopamine‐beta‐hydroxylase: insights into the relationship between the soluble and the membrane‐bound forms of the enzyme. , 1987, The EMBO journal.

[69]  S. Strome Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans , 1986, The Journal of cell biology.

[70]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  I. Orchard,et al.  Evidence for octopaminergic modulation of an insect visceral muscle. , 1985, Journal of neurobiology.

[72]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  C. Voltattorni,et al.  Distribution of neurones containing dopa decar☐ylase and dopamine-β-hydroxylase in some sympathetic ganglia of the dog: A quantitative study , 1984, Neuroscience.

[74]  R. L. Russell,et al.  Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. , 1984, Genetics.

[75]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[76]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[77]  M. Livingstone,et al.  Genetic dissection of monoamine neurotransmitter synthesis in Drosophila , 1983, Nature.

[78]  H. Horvitz,et al.  Serotonin and octopamine in the nematode Caenorhabditis elegans. , 1982, Science.

[79]  J. Lewis,et al.  Levamisole-resitant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors , 1980, Neuroscience.

[80]  J. Nathanson Octopamine receptors, adenosine 3',5'-monophosphate, and neural control of firefly flashing. , 1979, Science.

[81]  L. Kämpfe L. Barron, The Nematode‐Destroying Fungi (Topics in Mycobiology, No. 1). 140 S., 57 Abb., 1 Tab. Guelph‐Ontario, Canada 1977. Canadian Biol. Publ. Ltd. $ 12.50 , 1979 .

[82]  P. Molinoff,et al.  Distribution and properties of adrenergic storage vesicles in nerve terminals. , 1976, The Journal of pharmacology and experimental therapeutics.

[83]  Boulton Aa,et al.  Identification, Distribution, Metabolism, and Function of Meta and Para Tyramine, Phenylethylamine and Tryptamine in Brain , 1976 .

[84]  A. Boulton Identification, distribution, metabolism, and function of meta and para tyramine, phenylethylamine and tryptamine in brain. , 1976, Advances in biochemical psychopharmacology.

[85]  J. Sulston,et al.  Dopaminergic neurons in the nematode Caenorhabditis elegans , 1975, The Journal of comparative neurology.

[86]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.