A Three-phase Approach to an Enhanced Index-tracking Problem with Real-life Constraints

Abstract Enhanced index tracking is an emerging strategy for investing money in the stock market and is aimed at achieving outperformance over a given benchmark index while achieving a low tracking error. We consider the problem of rebalancing a portfolio for an enhanced index tracking strategy subject to various real-life constraints, including a lower bound and an upper bound on the expected tracking error. To solve this problem, we propose a three-phase approach consisting of preprocessing, optimization, and learning. In a computational experiment, we applied this approach to rebalance a given portfolio on a monthly basis over a time horizon of 10 years; the data for the S&P 500 benchmark index were provided by the investment company Principal Global Investors. Our approach generated portfolios that were provably close to optimality for all monthly rebalancing decisions. Over the entire horizon of 10 years, the portfolios devised by our approach yielded cumulative returns higher than the S&P 500 index after transaction costs with a moderate tracking error.

[1]  R. Roll,et al.  A Mean/Variance Analysis of Tracking Error , 1992 .

[2]  J. W. Kwiatkowski Algorithms for index tracking , 1992 .

[3]  Akiko Takeda,et al.  Simultaneous pursuit of out-of-sample performance and sparsity in index tracking portfolios , 2012, Comput. Manag. Sci..

[4]  Oliver Strub,et al.  A two-stage approach to the UCITS-constrained index-tracking problem , 2019, Comput. Oper. Res..

[5]  Kostas Andriosopoulos,et al.  Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets , 2014, Eur. J. Oper. Res..

[6]  H. Zimmermann,et al.  A linear model for tracking error minimization , 1999 .

[7]  Francesco Cesarone,et al.  A linear risk-return model for enhanced indexation in portfolio optimization , 2015, OR Spectr..

[8]  Maria Grazia Speranza,et al.  Kernel Search: An application to the index tracking problem , 2012, Eur. J. Oper. Res..

[9]  Maria Grazia Speranza,et al.  A heuristic framework for the bi-objective enhanced index tracking problem , 2016 .

[10]  Tiago Pascoal Filomena,et al.  Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection , 2017 .

[11]  Dag Haugland,et al.  Minimizing the tracking error of cardinality constrained portfolios , 2018, Comput. Oper. Res..

[12]  Maria Grazia Speranza,et al.  Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem , 2016, Eur. J. Oper. Res..

[13]  Denis Borenstein,et al.  Index tracking with controlled number of assets using a hybrid heuristic combining genetic algorithm and non-linear programming , 2017, Ann. Oper. Res..

[14]  Mario Gnagi,et al.  Tracking and outperforming large stock-market indices , 2020, Omega.

[15]  P. Baumann,et al.  Optimal construction and rebalancing of index-tracking portfolios , 2018, Eur. J. Oper. Res..

[16]  Sandra Paterlini,et al.  Differential evolution and combinatorial search for constrained index-tracking , 2009, Ann. Oper. Res..

[17]  R. Jansen,et al.  Optimal Benchmark Tracking with Small Portfolios , 2002 .

[18]  Abdullah Al Mamun,et al.  Dynamic index tracking via multi-objective evolutionary algorithm , 2013, Appl. Soft Comput..

[19]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[20]  Nico van der Wijst,et al.  Optimal portfolio selection and dynamic benchmark tracking , 2005, Eur. J. Oper. Res..

[21]  Jitka Dupacová,et al.  Portfolio optimization via stochastic programming: Methods of output analysis , 1999, Math. Methods Oper. Res..

[22]  Dietmar Maringer,et al.  Index tracking with constrained portfolios , 2007, Intell. Syst. Account. Finance Manag..

[23]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[24]  Andrew Rudd,et al.  Optimal Selection of Passive Portfolios , 1980 .