Writing the History of Dynamical Systems and Chaos: Longue Durée and Revolution, Disciplines and Cultures

Abstract Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincare who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincare to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as much as a sociodisciplinary convergence. © 2002 Elsevier Science (USA). Entre la fin des annees 1960 et le debut des annees 1980, la reconnaissance du fait que des lois dynamiques simples peuvent donner naissance a des comportements tres compliques a ete souvent ressentie comme une vraie revolution concernant plusieurs disciplines en train de former une nouvelle science, la “science du chaos.” Rapidement, les mathematiciens ont reagi en soulignant l'anciennete de la theorie des systemes dynamiques fondee a la fin du XIXeme siecle par Henri Poincare qui avait deja obtenu ce resultat precis. Dans cet article, nous mettons en evidence les tensions historiographiques issues de diverses confrontations: l'histoire de longue duree versus la notion de revolution, les mathematiques pures versus l'utilisation des techniques mathematiques dans d'autres domaines. Apres avoir passe en revue l'historiographie de la theorie des systemes dynamiques de Poincare jusqu'aux annees 1960, nous soulignons les travaux pionniers d'un petit nombre d'individus: Steve Smale, Edward Lorenz et David Ruelle. Nous poursuivons en discutant la nature du phenomene du chaos qui constitue, selon notre analyse, tant une reconfiguration conceptuelle qu'une convergence sociale et disciplinaire. © 2002 Elsevier Science (USA). MSC subject classifications : 01A60, 01A85, 37-03, 76-03, 82-03, 86-03.

[1]  G. A. Tokaty,et al.  A History and Philosophy of Fluid Mechanics , 1971 .

[2]  T. Porter The Rise of Statistical Thinking, 1820-1900 , 2020 .

[3]  S. Smale,et al.  Structurally Stable Systems are not Dense , 1966 .

[4]  H. Swinney,et al.  Onset of Turbulence in a Rotating Fluid , 1975 .

[5]  Mark Kac,et al.  John von Neumann and Norbert Wiener. From Mathematics to the Technologies of Life and Death. , 1982 .

[6]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[7]  F. Takens,et al.  Note concerning our paper: ``On the nature of turbulence'' , 1971 .

[8]  F. Takens,et al.  On the nature of turbulence , 1971 .

[9]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .

[10]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[11]  T. Kuhn The structure of scientific revolutions, 3rd ed. , 1996 .

[12]  J. Tennyson In the wake of chaos. Unpredictable order in dynamical systems , 1995 .

[13]  E. Lorenz,et al.  The essence of chaos , 1993 .

[14]  John Guckenheimer,et al.  The catastrophe controversy , 1978 .

[15]  Archie E. Roy,et al.  The Stability of the Solar System , 2019, Chaos in Nature.

[16]  Sara Franceschelli Construction de signification physique dans le métier de physicien : Le cas du chaos déterministe , 2001 .

[17]  D. Ruelle Differentiable dynamical systems and the problem of turbulence , 1981 .

[18]  Nikolai SergeevichHG Krylov,et al.  Works on the foundations of statistical physics , 1979 .

[19]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[20]  R. Thom Apologie du logos , 1990 .

[21]  R. Thom,et al.  Prédire n'est pas expliquer , 1991 .

[22]  J. Hadamard L'œuvre mathématique de Poincaré , .

[23]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[24]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[25]  P. Atten,et al.  Instability and convection in fluid layers: A report on Euromech 106 , 1979, Journal of Fluid Mechanics.

[26]  Amy Dahan Dalmedico,et al.  History and Epistemology of Models: Meteorology (1946–1963) as a Case Study , 2001 .

[27]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[28]  Personal Perspectives on Mathematics and Mechanics , 1980 .

[29]  S. Smale Differentiable dynamical systems , 1967 .

[30]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[31]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[32]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[33]  É. Brian La mesure de l'État : administrateurs et géomètres au XVIIIe siècle , 1994 .

[34]  S. Goldstein,et al.  Fluid Mechanics in the First Half of this Century , 1969 .

[35]  L'aléatoire du non-aléatoire , 1985 .

[36]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[37]  Henri Poincaré,et al.  Science et méthode , 1934 .

[38]  Nicholas C. Metropolis,et al.  On Finite Limit Sets for Transformations on the Unit Interval , 1973, J. Comb. Theory A.

[39]  H. Schuster Deterministic chaos: An introduction , 1984 .

[40]  J. Maurer,et al.  A Rayleigh Bénard Experiment: Helium in a Small Box , 1982 .

[41]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  P. Stefan A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line , 1977 .

[43]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[44]  Stephen Smale,et al.  The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics , 1980 .

[45]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[46]  J. Palis On the Contribution of Smale to Dynamical Systems , 1993 .

[47]  M. Velarde Steady States, Limit Cycles and the Onset of Turbulence. A few Model Calculations and Exercises , 1982 .

[48]  A. N. Kolmogorov,et al.  Selected Works of A.N. Kolmogorov , 1991 .

[49]  J. Becker,et al.  The Aim and Structure of Physical Theory , 1955 .

[50]  Peter L. Knight The Laser in America 1950–1970 , 1992 .

[51]  Paul C. Martin,et al.  Energy spectra of certain randomly-stirred fluids , 1979 .

[52]  Leo P. Kadanoff,et al.  From order to chaos II : essays : critical, chaotic and otherwise , 1993 .

[53]  Y. Pomeau,et al.  Intermittency in Rayleigh-Bénard convection , 1980 .

[54]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[55]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[56]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[57]  Ralph Duncan James,et al.  Proceedings of the International Congress of Mathematicians , 1975 .

[58]  Edgar Morin,et al.  La méthode. 1 : La Nature de la Nature , 1977 .

[59]  J. Neumann Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[60]  É. Géhin Le paradigme perdu : la nature humaine , 1974 .

[61]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[62]  A. D. Dalmédico L'essor des mathématiques appliquées aux États-Unis : l'impact de la seconde guerre mondiale , 2018, Revue d'histoire des mathématiques.

[63]  René Thom,et al.  Esquisse d'une sémiophysique , 1988 .

[64]  John Guckenheimer,et al.  THE BIFURCATION OF QUADRATIC FUNCTIONS * , 1979 .

[65]  Otto E. Rössler,et al.  Bifurcation theory and applications in scientific disciplines , 1979 .

[66]  Oscar II's prize competition and the error in Poincaré's memoir on the three body problem , 1994 .

[67]  E. Lorenz The problem of deducing the climate from the governing equations , 1964 .

[68]  D. Anosov Roughness of Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature , 2020 .

[69]  S. Smale Morse inequalities for a dynamical system , 1960 .

[70]  V. Paxson,et al.  Notices of the American Mathematical Society , 1998 .

[71]  I. G. Malkin,et al.  Some problems in the theory of nonlinear oscillations , 1959 .

[72]  D. Ruelle Turbulence, strange attractors, and chaos , 1995 .

[73]  L. Kadanoff Critical Behavior. Universality and Scaling , 1993 .

[74]  Margaret Morrison,et al.  Models as Mediators: Perspectives on Natural and Social Science , 1999 .

[75]  R. Hughes Models as Mediators: The Ising model, computer simulation, and universal physics , 1999 .

[76]  C. Bazerman Changing Order: Replication and Induction in Scientific Practice , 1989 .

[77]  E. Lorenz Energy and Numerical Weather Prediction , 1960 .

[78]  Christian Mira,et al.  Point Sequences Generated by Two-Dimensional Recurrences , 1974, IFIP Congress.

[79]  J. G. Charney,et al.  Integration of the primitive and balance equations. , 1962 .

[80]  D. Robertson,et al.  Studying the earth by very-long-baseline interferometry , 1986 .

[81]  J. Tattersall,et al.  The Mathematical Collaboration of M. L. Cartwright and J. E. Littlewood , 1996 .

[82]  Pierre Maurice Marie Duhem,et al.  La théorie physique. Son objet, sa structure , 1906 .

[83]  N. Levinson On a Non-linear Differential Equation of the Second Order , 1943 .

[84]  Pierre Collet,et al.  Period doubling bifurcations for families of maps on ℝn , 1981 .

[85]  Isabelle Stengers,et al.  La nouvelle alliance , 1979 .

[86]  P. Guttorp,et al.  The Taming of Chance. , 1992 .

[87]  Statistics in Britain 1865–1930. The Social Construction of Scientific Knowledge , 1982 .

[88]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[89]  J. Earley,et al.  Order Out of Chaos: Man’s New Dialogue With Nature , 1985, Process Studies.

[90]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[91]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[92]  M. Rosenblatt,et al.  Statistical models and turbulence : proceedings of a symposium held at the University of California, San Diego (La Jolla), July 15-21, 1971 , 1972 .

[93]  J. P. Lasalle The stability and control of discrete processes , 1986 .

[94]  Joseph Ford,et al.  Amplitude Instability and Ergodic Behavior for Conservative Nonlinear Oscillator Systems , 1969 .

[95]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[96]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[97]  René Thom,et al.  Modèles mathématiques de la morphogénèse , 1971 .

[98]  J. Rowlinson The critical point: A historical introduction to the modern theory of critical phenomena , 1997 .

[99]  J. Monod Le hasard et la nécessité , 1970 .

[100]  R. Thom Stabilité structurelle et morphogénèse : essai d'une théorie générale des modèles , 1977 .

[101]  G. Ahlers,et al.  Low-Temperature Studies of the Rayieigh-Bénard Instability and Turbulence , 1974 .

[102]  S. Lefschetz Contributions to the theory of nonlinear oscillations , 1950 .

[103]  R. Thom Les singularites des applications differentiables , 1956 .

[104]  David Ruelle,et al.  Hasard et chaos , 1991 .

[105]  M. Albornoz Re-Thinking Science: Knowledge and the Public in an Age of Uncertainty , 2003 .

[106]  Ralph Abraham Chaos, Gaia, Eros: A Chaos Pioneer Uncovers the Three Great Streams of History , 1994 .

[107]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[108]  J. Dieudonne Pour l'honneur de l'esprit humain : les mathématiques aujourd'hui , 1987 .

[109]  Steve J. Heims,et al.  The Cybernetics Group , 1991 .

[110]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[111]  Paul C. Martin,et al.  Transition to turbulence in a statically stressed fluid system , 1975 .

[112]  S. Treiman,et al.  QED and the Men Who Made It: Dyson, Feynman, Schwinger and Tomonaga , 1994 .

[113]  Umberto Bottazzini,et al.  The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , 1986 .

[114]  T. Rikitake,et al.  Oscillations of a system of disk dynamos , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[115]  B. Widom,et al.  Surface Tension and Molecular Correlations near the Critical Point , 1965 .

[116]  S. Smale The story of the higher dimensional poincaré conjecture (what actually happened on the beaches of rio) , 1990 .

[117]  A. Shiryaev Kolmogorov: Life and Creative Activities , 1989 .

[118]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[119]  C. Pugh,et al.  Structural stability , 2008, Scholarpedia.

[120]  Jean-Luc Chabert,et al.  Un demi-siecle de fractales: 1870–1920 , 1990 .

[121]  Martin,et al.  The great Devonian controversy , 1985 .

[122]  Bernard Derrida,et al.  Iteration of endomorphisms on the real axis and representation of numbers , 1978 .

[123]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[124]  S. S. Cairns,et al.  Differential and combinatorial topology : a symposium in honor of Marston Morse , 1965 .

[125]  D. J. Tritton,et al.  The Theory of Hydrodynamic Stability , 1977 .

[126]  V. I. Arnol’d Physicists’ Treatment of Catastrophes Before Catastrophe Theory , 1994 .

[127]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[128]  J. Hadamard Œuvres de Jacques Hadamard .. , 1968 .

[129]  David Ruelle,et al.  International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975, Sept. 14-21 , 1976 .

[130]  S. Lefschetz Lectures on differential equations , 1946 .

[131]  A. Desrosières La politique des grands nombres : histoire de la raison statistique , 2000 .

[132]  K. Freed,et al.  Statistical mechanics; new concepts, new problems, new applications , 1972 .

[133]  Percy Dunsheath,et al.  History of Electrical Engineering , 1962 .

[134]  William Parry,et al.  Topics in Ergodic Theory , 1981 .

[135]  R. Temam Turbulence and Navier Stokes Equations , 1976 .

[136]  I. Bendixson Sur les courbes définies par des équations différentielles , 1901 .

[137]  M. Serres,et al.  La Naissance de la physique dans le texte de Lucrece: Fleuves et turbulences , 1980 .

[138]  C. Gilain La théorie qualitative de Poincaré et le problème de l'intégration des équations différentielles , 1991 .

[139]  Andrew Pickering,et al.  Constructing Quarks: A Sociological History of Particle Physics. , 1986 .

[140]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[141]  R. Abraham,et al.  Foundations of mechanics : a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the three-body problem , 1978 .

[142]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[143]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[144]  A. Libchaber,et al.  UNE EXPERIENCE DE RAYLEIGH-BENARD DE GEOMETRIE REDUITE ; MULTIPLICATION, ACCROCHAGE ET DEMULTIPLICATION DE FREQUENCES , 1980 .

[145]  T. Kármán The engineer grapples with nonlinear problems , 1940 .

[146]  I. Hacking The Social Construction of What , 1999 .

[147]  M. Feigenbaum Universal behavior in nonlinear systems , 1983 .

[148]  Christian Mira SOME HISTORICAL ASPECTS CONCERNING THE THEORY OF DYNAMIC SYSTEMS , 1986 .

[149]  R. Thom La Théorie des Catastrophes: Etat Présent et Perspectives , 1975 .

[150]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[151]  L. Daston Classical Probability in the Enlightenment , 1988 .

[152]  William Aspray,et al.  John von Neumann and the origins of modern computing , 1990, History of computing.

[153]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[154]  Stuart Bennett,et al.  A History of Control Engineering 1930-1955 , 1993 .

[155]  H. Atlan Entre le cristal et la fumée : essai sur l'organisation du vivant , 1979 .

[156]  S. Smale,et al.  Finding a horseshoe on the beaches of Rio , 1998 .

[157]  David Aubin,et al.  The Withering Immortality of Nicolas Bourbaki: A Cultural Connector at the Confluence of Mathematics, Structuralism, and the Oulipo in France , 1997, Science in Context.

[158]  S. Smale Diffeomorphisms with Many Periodic Points , 1965 .

[159]  A. Elzinga The New Production of Knowledge. The Dynamics of Science and Research in Contemporary Societies , 1997 .

[160]  P. Cvitanović Universality in Chaos , 1989 .

[161]  H. F. DeBaggis III. Dynamical Systems with Stable Structures , 1953 .

[162]  Susan Leigh Star,et al.  Institutional Ecology, `Translations' and Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39 , 1989 .

[163]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[164]  Samuel Lattès,et al.  Sur les équations fonctionnelles qui définissent une courbe ou une surface invariante par une transformation , 1907 .

[165]  D. MacKenzie,et al.  Statistics in Britain, 1865-1930 : the social construction of scientific knowledge , 1982 .

[166]  D. Ruelle Strange attractors as a mathematical explanation of turbulence , 1972 .

[167]  D'un modèle de la science à une science des modèles , 1975, Synthese.

[168]  R. Reynolds,et al.  Bulletin of the American Meteorological Society , 1996 .

[169]  R. Abraham In Pursuit of Birkhoff's Chaotic Attractor , 1985 .

[170]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[171]  Lily E. Kay,et al.  Who Wrote the Book of Life?: A History of the Genetic Code , 2000 .

[172]  G. D. Birkhoff Sur quelques courbes fermées remarquables , 1932 .

[173]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[174]  R. Donnelly Taylor‐Couette Flow: The Early Days , 1991 .

[175]  G. Israel La mathématisation du réel : essai sur la modélisation mathématique , 1996 .

[176]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[177]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[178]  Paul Forman,et al.  Weimar Culture, Causality, and Quantum Theory, 1918-1927: Adaptation by German Physicists and Mathematicians to a Hostile Intellectual Environment , 1971 .

[179]  S. Smale Dynamical systems and the topological conjugacy problem for diffeomorphisms , 1963 .

[180]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[181]  C. R. Fay The Aim and Structure of Physical Theory , 1958 .

[182]  Tormod Riste,et al.  Fluctuations, Instabilities, and Phase Transitions , 1975 .

[183]  P. Fatou,et al.  Sur l'itération des fonctions transcendantes Entières , 1926 .

[184]  G. Ahlers Over two decades of pattern formation, a personal perspective , 1995 .

[185]  A. Roshko On the problem of turbulence , 2000 .

[186]  E. C. Zeeman,et al.  Differential equations for the heartbeat and nerve impulse , 1973 .

[187]  B. M. Kiernan,et al.  The development of Galois theory from Lagrange to Artin , 1971 .

[188]  W. Tucker The Lorenz attractor exists , 1999 .

[189]  R. Thom Modèles mathématiques de la morphogenèse : recueil de textes sur la théorie des catastrophes et ses applications , 1974 .

[190]  P. Masani Norbert Wiener , 1983 .

[191]  Jean-Luc Chabert,et al.  Chaos et déterminisme , 1992 .

[192]  Henri Poincaré,et al.  Sur un théorème de géométrie , 1912 .

[193]  P. Coullet,et al.  Critical transition to stochasticity for some dynamical systems , 1980 .

[194]  P. Bergé,et al.  L'ordre dans le chaos. , 1984 .

[195]  P. C. Martin INSTABILITIES, OSCILLATIONS, AND CHAOS , 1976 .

[196]  Alan E. Shapiro,et al.  The investigation of difficult things : essays on Newton and the history of the exact sciences in honour of D.T. Whiteside , 1992 .

[197]  Michael Crichton,et al.  Jurassic Park , 1993, Bio/Technology.

[198]  M. Hirsch The dynamical systems approach to differential equations , 1984 .

[199]  T. W. Barrett,et al.  Catastrophe Theory, Selected Papers 1972-1977 , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[200]  T. Kuhn,et al.  The Structure of Scientific Revolutions , 1963 .

[201]  E. Lorenz Maximum Simplification of the Dynamic Equations , 1960 .

[202]  Vladimir Igorevich Arnolʹd,et al.  Problèmes ergodiques de la mécanique classique , 1967 .

[203]  G. Torris Edgar Morin, Le paradigme perdu : la nature humaine, Paris, Éditions du Seuil, 1973 , 1974 .

[204]  Stephen Smale,et al.  Review: E. C. Zeeman, Catastrophe theory: Selected papers, 1972–1977 , 1978 .

[205]  T. Yoshizawa On the non-linear differential equation , 1953 .

[206]  A renormalization group with periodic behaviour , 1979 .

[207]  René Thom,et al.  Mathematical Models of Morphogenesis , 1984 .

[208]  H. Sussmann,et al.  Catastrophe theory as applied to the social and biological sciences: A critique , 1978, Synthese.

[209]  P. Holmes Poincaré, celestial mechanics, dynamical-systems theory and “chaos” , 1990 .

[210]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[211]  Mathematical theories versus biological facts: a debate on mathematical population dynamics in the 1930s. , 1996, Historical studies in the physical and biological sciences : HSPS.

[212]  J. Barrow-Green Poincare and the Three Body Problem , 1996 .

[213]  D. J. Wallace,et al.  Critical point phenomena: universal physics at large length scales , 1993 .

[214]  Theodore M. Porter,et al.  Trust in Numbers , 2020 .

[215]  N. Levinson,et al.  Transformation Theory of Non-Linear Differential Equations of the Second Order , 1944 .

[216]  K. G. Andersson Poincaré's discovery of homoclinic points , 1994 .

[217]  Randolph C. Grace,et al.  The politics of large numbers: A history of statistical reasoning , 2000 .

[218]  A. P. Youschkevitch The concept of function up to the middle of the 19th century , 1976, Archive for History of Exact Sciences.

[219]  P. Anderson More is different. , 1972, Science.

[220]  M. Dubois,et al.  Time dependent velocity in Rayleigh-Bernard convection: A transition to turbulence , 1976 .

[221]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[222]  M. Deakin Catastrophe theory. , 1977, Science.

[223]  F. Dyson Nature's Numbers. By Ian Stewart , 1996 .

[224]  N. Katherine Hayles,et al.  Chaos Bound: Orderly Disorder in Contemporary Literature and Science. , 1992 .

[225]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[226]  Ph. Le Corbeiller,et al.  Les systèmes autoentretenus et les oscillations de relaxation , 1933 .

[227]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[228]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .

[229]  P. G. de Gennes,et al.  Phase Transition and Turbulence: An Introduction , 1975 .

[230]  J. Guckenheimer,et al.  Stephen Smale: The Mathematician Who Broke the Dimension Barrier , 2000 .

[231]  J. Lagasse,et al.  Study of Recurrence Relationships and their Applications by the Laboratoire D'Automatique Et De Ses Applications Spatiales , 1972 .

[232]  E. Coumet La théorie du hasard est-elle née par hasard ? , 1970, Annales. Histoire, Sciences Sociales.

[233]  Yoshisuke Ueda Strange Attractors and the Origin of Chaos , 2000 .

[234]  Mitchell J. Feigenbaum,et al.  The onset spectrum of turbulence , 1979 .

[235]  Peter Bernard,et al.  Turbulence Seminar, Berkeley 1976/77 , 1977 .

[236]  Christian Mira Some Historical Aspects of Nonlinear Dynamics: Possible Trends for the Future , 1997 .

[237]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.