Material informatics for layered high-TC superconductors

Superconductors were typically discovered by trial-and-error aided by the knowledge and intuition of individual researchers. In this work, using materials informatics aided by machine learning (ML), we build an ML model of superconductors, which is based on several material descriptors with apparent physical meanings to efficiently predict critical superconducting temperature TC. The descriptors include the average atomic mass of a compound, the average number of electrons in an unfilled shell, the average ground state atomic magnetic moments, the maximum difference of electronegativity, etc. To fully optimize the ML model, we develop a multi-step learning and multi-algorithm cross-verification approach. For known high TC superconductors, our ML model predicts excellent TC values with over 92% confidence. When the ML model is applied to about 2500 layered materials in the inorganic crystal structure database, 25 of them are predicted to be superconductors not known before, including 12 cuprates, 7 iron-based crystals, and 6 others, with TC ranging from ∼32 K to ∼138 K. The findings shed considerable light on the mapping between the material descriptors and TC for layered superconductors. The ML calculates that in our descriptors, the maximum difference of electronegativity is the most important one.

[1]  J. Labbé,et al.  Strong-Coupling Superconductivity in V3X type of Compounds , 1967 .

[2]  J. Hirsch,et al.  Enhanced superconductivity in quasi-two-dimensional systems. , 1986, Physical review letters.

[3]  Pines,et al.  Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. , 1992, Physical review. B, Condensed matter.

[4]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[5]  P. Anderson,et al.  Interlayer Tunneling and Gap Anisotropy in High-Temperature Superconductors , 1993, Science.

[6]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[7]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[8]  A. L. Kuzemsky,et al.  Structural sensitivity of superconducting properties of layered systems , 2002 .

[9]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[10]  N. Ashcroft Hydrogen dominant metallic alloys: high temperature superconductors? , 2004, Physical review letters.

[11]  T. Zaleski,et al.  Dependence of the superconducting critical temperature on the number of layers in a homologous series of high- T c cuprates , 2004, cond-mat/0406142.

[12]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[13]  Y. Avishai,et al.  Nature of the superconductor–insulator transition in disordered superconductors , 2007, Nature.

[14]  X. H. Chen,et al.  Superconductivity at 56 K in samarium-doped SrFeAsF , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  O. Eriksson,et al.  Possible high-temperature superconductors predicted from electronic structure and data-filtering algorithms , 2011, 1109.6935.

[16]  New Jersey Institute of Technology,et al.  Theory of High-Tc Superconductivity: Accurate Predictions of Tc , 2012, 1202.2480.

[17]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[18]  A. P. Drozdov,et al.  Conventional superconductivity at 190 K at high pressures , 2014, 1412.0460.

[19]  Zhong-Li Liu,et al.  Muse: Multi-algorithm collaborative crystal structure prediction , 2013, Comput. Phys. Commun..

[20]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[21]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[22]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[23]  Alok Choudhary,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016 .

[24]  W. Shen,et al.  Modelling and optimization of the superconducting transition temperature , 2016 .

[25]  Ian Foster,et al.  Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery , 2018 .

[26]  Logan T. Ward,et al.  A machine learning approach for engineering bulk metallic glass alloys , 2018, Acta Materialia.

[27]  Feng Lin,et al.  Machine Learning Directed Search for Ultraincompressible, Superhard Materials. , 2018, Journal of the American Chemical Society.

[28]  Corey Oses,et al.  Machine learning modeling of superconducting critical temperature , 2017, npj Computational Materials.

[29]  T. Rhone,et al.  Systematic search for two-dimensional ferromagnetic materials , 2018, Physical Review Materials.

[30]  D. Graf,et al.  Superconductivity at 250 K in lanthanum hydride under high pressures , 2018, Nature.

[31]  R. Hemley,et al.  Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures. , 2018, Physical review letters.