Sub 200 fs pulse generation from a graphene mode-locked fiber laser

Ultrafast fiber lasers with broad bandwidth are in great demand for a variety of applications, such as spectroscopy, biomedical diagnosis, and optical communications. Sub 200 fs pulses are required for ultrafast spectroscopy with high temporal resolution. Graphene is an ideal ultrawide-band saturable absorber. We report the generation of 174 fs pulses from a graphene-based fiber laser.

[1]  I. White,et al.  L-band ultrafast fiber laser mode locked by carbon nanotubes , 2008 .

[2]  F. Krausz,et al.  Kerr lens mode locking. , 1992, Optics letters.

[3]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[4]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[5]  E. Dianov,et al.  177fs erbium-doped fiber laser mode locked with a cellulose polymer film containing single-wall carbon nanotubes , 2008 .

[6]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[9]  Yong-Won Song,et al.  Graphene mode-lockers for fiber lasers functioned with evanescent field interaction , 2010 .

[10]  Tobias Kampfrath,et al.  Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. , 2005, Physical review letters.

[11]  Gianluca Galzerano,et al.  Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser , 2006 .

[12]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  M. Nakazawa,et al.  A 113 fs fiber laser operating at 1.56 mum using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide. , 2010, Optics express.

[15]  Hermann A. Haus,et al.  Soliton versus nonsoliton operation of fiber ring lasers , 1994 .

[16]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[17]  V. Kravets,et al.  Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption , 2010, 1003.2618.

[18]  K. El-kader Spectroscopic behavior of poly(vinyl alcohol) films with different molecular weights after UV irradiation, thermal annealing, and double treatment with UV irradiation and thermal annealing , 2003 .

[19]  Ian H. White,et al.  Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers , 2008 .

[20]  Ian H. White,et al.  Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes , 2010 .

[21]  Dingyuan Tang,et al.  Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. , 2009, Optics express.

[22]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[23]  M. Jablonski,et al.  Ultrafast fiber pulsed lasers incorporating carbon nanotubes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[25]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[26]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[27]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[28]  Samuli Kivistö,et al.  Carbon nanotube films for ultrafast broadband technology. , 2009, Optics express.

[29]  S. Mccall,et al.  Self-Induced Transparency by Pulsed Coherent Light , 1967 .

[30]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[31]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[32]  C. Berger,et al.  Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy , 2008 .

[33]  D. Linde Characterization of the noise in continuously operating mode-locked lasers , 1986 .

[34]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[35]  Holger Lubatschowski,et al.  Femtosecond Technology for Technical and Medical Applications , 2010 .

[36]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[37]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[38]  A. Ferrari,et al.  A compact, high power, ultrafast laser mode-locked by carbon nanotubes , 2009 .

[39]  M. Fermann,et al.  Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber. , 1993, Optics letters.

[40]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[41]  Zhipei Sun,et al.  A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser , 2010 .