Inverse regression for longitudinal data

Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.

[1]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[2]  H. Müller,et al.  Modelling sparse generalized longitudinal observations with latent Gaussian processes , 2008 .

[3]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[4]  R. Dennis Cook,et al.  Estimating central subspaces via inverse third moments , 2003 .

[5]  Jane-Ling Wang,et al.  Functional canonical analysis for square integrable stochastic processes , 2003 .

[6]  R. Cook,et al.  A NOTE ON SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2007 .

[7]  R. Cook,et al.  Dimension reduction for conditional mean in regression , 2002 .

[8]  L. Ferré,et al.  Smoothed Functional Inverse Regression , 2005 .

[9]  P. Hall On Projection Pursuit Regression , 1989 .

[10]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[11]  Tosio Kato Perturbation theory for linear operators , 1966 .

[12]  J L Wang,et al.  Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of Mediterranean fruit fly females. , 1998, The journals of gerontology. Series A, Biological sciences and medical sciences.

[13]  R. Cook,et al.  Dimension reduction for the conditional kth moment in regression , 2002 .

[14]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[15]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[16]  Wolfgang Härdle,et al.  Sliced inverse regression for dimension reduction. Comments. Reply , 1991 .

[17]  John A. Rice,et al.  FUNCTIONAL AND LONGITUDINAL DATA ANALYSIS: PERSPECTIVES ON SMOOTHING , 2004 .

[18]  R. D. Cook,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY OF A METHOD FOR SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2010 .

[19]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[20]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[21]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[22]  Tailen Hsing,et al.  DECIDING THE DIMENSION OF EFFECTIVE DIMENSION REDUCTION SPACE FOR FUNCTIONAL AND HIGH-DIMENSIONAL DATA , 2010, 1011.2620.

[23]  T. Hsing,et al.  An RKHS formulation of the inverse regression dimension-reduction problem , 2009, 0904.0076.