A new image registration scheme based on curvature scale space curve matching

We propose a new image registration scheme for remote sensing images. This scheme includes three steps in sequence. First, a segmentation process is performed on the input image pair. Then the boundaries of the segmented regions in two images are extracted and matched. These matched regions are called confidence regions. Finally, a non-linear optimization is performed in the matched regions only to obtain a global set of transform parameters. Experiments show that this scheme is more robust and converges faster than registration of the original image pair. We also develop a new curve-matching algorithm based on curvature scale space to facilitate the second step.

[1]  Michael Unser,et al.  Iterative multi-scale registration without landmarks , 1995, Proceedings., International Conference on Image Processing.

[2]  Jacqueline Le Moigne,et al.  The Translation Sensitivity of Wavelet-Based Registration , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Miroslaw Bober,et al.  Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization , 2011, Computational Imaging and Vision.

[4]  D. Hill,et al.  Medical image registration , 2001, Physics in medicine and biology.

[5]  A. Ardeshir Goshtasby,et al.  Volumetric image registration by template matching , 2000, Medical Imaging: Image Processing.

[6]  Guojun Lu,et al.  A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval , 2002 .

[7]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[8]  Jacqueline Le Moigne,et al.  Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient , 2003, IEEE Trans. Image Process..

[9]  Kidiyo Kpalma,et al.  An automatic image registration for applications in remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[11]  Siamak Khorram,et al.  A feature-based image registration algorithm using improved chain-code representation combined with invariant moments , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  Farzin Mokhtarian,et al.  A Theory of Multi-Scale, Curvature and Torsion Based Shape Representation for Planar and Space Curves , 1990 .

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[15]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Josef Kittler,et al.  Enhancing CSS-based shape retrieval for objects with shallow concavities , 2000, Image Vis. Comput..

[17]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[18]  B. S. Manjunath,et al.  A contour-based approach to multisensor image registration , 1995, IEEE Trans. Image Process..

[19]  R. Bellman Dynamic programming. , 1957, Science.

[20]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[21]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[22]  R. Mohan,et al.  Motion adaptive x-ray therapy: a feasibility study , 2001, Physics in medicine and biology.

[23]  Farzin Mokhtarian,et al.  Silhouette-Based Isolated Object Recognition through Curvature Scale Space , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[25]  Akshay K. Singh,et al.  Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[26]  Rama Chellappa,et al.  Fourier Coding of Image Boundaries , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[28]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  B. S. Manjunath,et al.  Registration Techniques for Multisensor Remotely Sensed Imagery , 1996 .

[30]  Jan Flusser,et al.  A moment-based approach to registration of images with affine geometric distortion , 1994, IEEE Trans. Geosci. Remote. Sens..

[31]  Y. Chen,et al.  Image registration via level-set motion: Applications to atlas-based segmentation , 2003, Medical Image Anal..

[32]  Li Yuan-yuan A SURVEY OF MEDICAL IMAGE REGISTRATION , 2006 .

[33]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[34]  Rama Chellappa,et al.  A computational vision approach to image registration , 1993, IEEE Trans. Image Process..

[35]  A. Ardeshir Goshtasby,et al.  Description and Discrimination of Planar Shapes Using Shape Matrices , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  J. Le Moigne,et al.  First evaluation of automatic image registration methods , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[37]  S. Senturia,et al.  Pull-in time dynamics as a measure of absolute pressure , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[38]  A Collignon,et al.  Automated multimodality image registration using information theory , 1995 .

[39]  Zhang Hong,et al.  A novel feature matching method in airborne SAR image registration , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[40]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[41]  A. Fitzgibbon,et al.  Video Registration , 2003, The International Series in Video Computing.

[42]  Pramod K. Varshney,et al.  Performance of mutual information similarity measure for registration of multitemporal remote sensing images , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  E. Chong,et al.  Introduction to optimization , 1987 .

[44]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[45]  Tarek El-Ghazawi,et al.  High-performance automatic image registration for remote sensing , 1999 .

[46]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..