A Scalable MCEM Estimator for Spatio-Temporal Autoregressive Models
暂无分享,去创建一个
Philipp Hunziker | Julian Wucherpfennig | Aya Kachi | Nils-Christian Bormann | A. Kachi | P. Hunziker | J. Wucherpfennig | N. Bormann
[1] Philip A. Schrodt. Precedents, Progress, and Prospects in Political Event Data , 2012 .
[2] James P. LeSage,et al. Fast Simulated Maximum Likelihood Estimation of the Spatial Probit Model Capable of Handling Large Samples , 2011 .
[3] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[4] S. Glaser,et al. A review of spatial econometric models for count data , 2017 .
[5] Thomas H. Klier,et al. Clustering of Auto Supplier Plants in the United States , 2008 .
[6] Y. Ye,et al. Interior Algorithms for Linear, Quadratic, and Linearly Constrained Convex Programming , 1997 .
[7] R. Pace,et al. Sparse spatial autoregressions , 1997 .
[8] David S. Siroky,et al. A Comparison of the Small-Sample Properties of Several Estimators for Spatial-Lag Count Models , 2009 .
[9] Virgilio Gómez-Rubio,et al. Spatial Point Patterns: Methodology and Applications with R , 2016 .
[10] K. Gleditsch,et al. It’s the Local Economy, Stupid! Geographic Wealth Dispersion and Conflict Outbreak Location , 2011 .
[11] S. Kalyvas,et al. The logic of violence in civil war , 2011 .
[12] D. McMillen. PROBIT WITH SPATIAL AUTOCORRELATION , 1992 .
[13] W. Gilks,et al. Adaptive rejection sampling from log-concave density functions , 1993 .
[14] Luc Anselin,et al. An O(N) parallel method of computing the Log-Jacobian of the variable transformation for models with spatial interaction on a lattice , 2009, Comput. Stat. Data Anal..
[15] Andreas Forø Tollefsen,et al. PRIO-GRID: A unified spatial data structure , 2012 .
[16] Roger Bivand,et al. Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods , 2013 .
[17] Florian M. Hollenbach,et al. Technology and Collective Action: The Effect of Cell Phone Coverage on Political Violence in Africa , 2013, American Political Science Review.
[18] Efficient High-Dimensional Importance Sampling in Mixture Frameworks , 2011 .
[19] D. Lambert,et al. A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application☆ , 2010 .
[20] Jeffrey M. Wooldridge,et al. Partial maximum likelihood estimation of spatial probit models , 2013 .
[21] Clionadh Raleigh,et al. Introducing ACLED: An Armed Conflict Location and Event Dataset , 2010 .
[22] Maciej Dakowicz. A unified spatial data structure for GIS , 2009 .
[23] Luc Anselin,et al. Thirty years of spatial econometrics , 2010 .
[24] Raffaella Calabrese,et al. Estimators of Binary Spatial Autoregressive Models: A Monte Carlo Study , 2013, 1302.3414.
[25] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[26] Jude C. Hays,et al. Spatial- and Spatiotemporal-Autoregressive Probit Models of Interdependent Binary Outcomes* , 2015, Political Science Research and Methods.
[27] Roman Liesenfeld,et al. Likelihood Based Inference and Prediction in Spatio-Temporal Panel Count Models for Urban Crimes , 2015 .
[28] Nils B. Weidmann,et al. Predicting Conflict in Space and Time , 2010 .
[29] Wim P. M. Vijverberg,et al. Probit in a Spatial Context: A Monte Carlo Analysis , 2004 .
[30] Rajesh Paleti,et al. A Spatial Multivariate Count Model for Firm Location Decisions , 2014 .
[31] J. LeSage. Introduction to spatial econometrics , 2009 .
[32] Evgenia K. Akritas,et al. Various proofs of Sylvester's (determinant) identity , 1996 .
[33] Avinash S. Bhati,et al. A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts , 2008 .
[34] J. LeSage. Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models , 2010 .
[35] Joris Pinkse,et al. Contracting in space: An application of spatial statistics to discrete-choice models , 1998 .
[36] A. Tollefsen. Insurgency and Inaccessibility 1 , 2015 .
[37] K. Ord. Estimation Methods for Models of Spatial Interaction , 1975 .
[38] C. McCulloch,et al. A Monte Carlo EM method for estimating multinomial probit models , 2000 .
[39] Galin L. Jones,et al. Ascent‐based Monte Carlo expectation– maximization , 2005 .
[40] Jean-Francois Richard,et al. Likelihood Evaluation of High-Dimensional Spatial Latent Gaussian Models with Non-Gaussian Response Variables , 2015 .