Modeling the Evolution of Gene Regulatory Networks for Spatial Patterning in Embryo Development

A central question in evolutionary biology concerns the transition between discrete numbers of units (e.g. vertebrate digits, arthropod segments). How do particular numbers of units, robust and characteristic for one species, evolve into another number for another species? Intermediate phases with a diversity of forms have long been theorized, but these leave little fossil or genomic data. We use evolutionary computations (EC) of a gene regulatory network (GRN) model to investigate how embryonic development is altered to create new forms. The trajectories are epochal and non-smooth, in accord with both the observed stability of species and the evolvability between forms.

[1]  L Wolpert,et al.  Principles of Development, 2nd Edition , 2002 .

[2]  Jingyuan Deng,et al.  Probing intrinsic properties of a robust morphogen gradient in Drosophila. , 2008, Developmental cell.

[3]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[4]  T. Schopf Models in Paleobiology , 1972 .

[5]  R. Jenner,et al.  Multicellular animals. The phylogenetic system of the Metazoa , 2001 .

[6]  David Kosman,et al.  Analysis of pattern precision shows that Drosophila segmentation develops substantial independence from gradients of maternal gene products , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[7]  Tanguy Chouard,et al.  Evolution: Revenge of the hopeful monster , 2010, Nature.

[8]  M. Kreitman,et al.  Canalization of segmentation and its evolution in Drosophila , 2007, Proceedings of the National Academy of Sciences.

[9]  S. Leibler,et al.  Precise domain specification in the developing Drosophila embryo. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[11]  Sri R. Paladugu,et al.  In silico evolution of functional modules in biochemical networks. , 2006, Systems biology.

[12]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[13]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[14]  Pieter Rein ten Wolde,et al.  Fundamental Limits to Position Determination by Concentration Gradients , 2007, PLoS Comput. Biol..

[15]  Lewis Wolpert,et al.  Principles of Development , 1997 .

[16]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[17]  A. Vincent,et al.  Head versus trunk patterning in the Drosophila embryo; collier requirement for formation of the intercalary segment. , 1999, Development.

[18]  C. Waddington,et al.  GENETIC ASSIMILATION OF THE BITHORAX PHENOTYPE , 1956 .

[19]  Stephen Jay Gould,et al.  The Return of Hopeful Monsters , 2006 .

[20]  Paulien Hogeweg,et al.  Material for : “ Evolution of networks for body plan patterning ; Interplay of modularity , robustness and evolvability ” , 2011 .

[21]  A. Spirov,et al.  In Silico Evolution of Gene Cooption in Pattern-Forming Gene Networks , 2012, TheScientificWorldJournal.

[22]  J. Mahaffey,et al.  Control of Drosophila head segment identity by the bZIP homeotic gene cnc. , 1995, Development.

[23]  W. Gehring,et al.  Empty spiracles, a gap gene containing a homeobox involved in Drosophila head development. , 1992, The EMBO journal.

[24]  Cyrill B. Muratov,et al.  An asymptotic study of the inductive pattern formation mechanism in Drosophila egg development , 2003 .

[25]  L. Wolpert,et al.  Local application of retinoic acid to the limb bond mimics the action of the polarizing region , 1982, Nature.

[26]  W. Gehring,et al.  Three maternal coordinate systems cooperate in the patterning of the Drosophila head. , 1994, Development.

[27]  P. R. ten Wolde,et al.  Finding the center reliably: robust patterns of developmental gene expression. , 2005, Physical review letters.

[28]  A. Mclaren,et al.  Signaling for germ cells. , 1999, Genes & development.

[29]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Melanie Mitchell,et al.  Finite populations induce metastability in evolutionary search , 1997 .

[31]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[32]  C. Waddington,et al.  GENETIC ASSIMILATION OF AN ACQUIRED CHARACTER , 1953 .

[33]  S. Shvartsman,et al.  Transitions in the model of epithelial patterning , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[34]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[35]  T. Bisseling,et al.  Model for the robust establishment of precise proportions in the early Drosophila embryo. , 2004, Journal of theoretical biology.

[36]  H. Jäckle,et al.  Redundant functions of the genes knirps and knirps-related for the establishment of anterior Drosophila head structures. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Q. Nie,et al.  Dynamics and precision in retinoic acid morphogen gradients. , 2012, Current opinion in genetics & development.

[38]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[39]  Douglas A Lauffenburger,et al.  Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. , 2002, Development.