Randomness and regularity

For the last ten years the theory of random structures has been one of the most rapidly evolving fields of discrete mathematics. The existence of sparse structures with good �global� properties has been vital for many applications in mathematics and computer science, and studying properties of such objects led to many challenging mathematical problems. In the paper we report on recent progress on this subject related to some variants of Szemeredi�s Regularity Lemma.

[1]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[2]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[3]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[6]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[7]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[8]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[9]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[10]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[11]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[12]  Yoshiharu Kohayakawa,et al.  Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.

[13]  Stefanie Gerke,et al.  K5-free subgraphs of random graphs , 2004, Random Struct. Algorithms.

[14]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[15]  V. Rödl,et al.  The hypergraph regularity method and its applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[16]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[17]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[18]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .