Global stability for a heroin model with age-dependent susceptibility

This paper considers global asymptotic properties for an age-structured model of heroin use based on the principles of mathematical epidemiology where the incidence rate depends on the age of susceptible individuals. The basic reproduction number of the heroin spread is obtained. It completely determines the stability of equilibria. By using the direct Lyapunov method with Volterra type Lyapunov function, the authors show that the drug-free equilibrium is globally asymptotically stable if the basic reproduction number is less than one, and the unique drug spread equilibrium is globally asymptotically stable if the basic reproduction number is greater than one.

[1]  C. Connell McCluskey,et al.  Complete global stability for an SIR epidemic model with delay — Distributed or discrete , 2010 .

[2]  J. Murray,et al.  Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs , 1987 .

[3]  Tailei Zhang,et al.  Global behaviour of a heroin epidemic model with distributed delays , 2011, Appl. Math. Lett..

[4]  Horst R. Thieme,et al.  Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators , 2011 .

[5]  E. C. Zeeman,et al.  Stability of dynamical systems , 1988 .

[6]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[7]  K. Sporer Acute Heroin Overdose , 1999, Annals of Internal Medicine.

[8]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[9]  Dynamics of a Heroin Epidemic Model with Very Population , 2011 .

[10]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[11]  G. Webb,et al.  Lyapunov functional and global asymptotic stability for an infection-age model , 2010 .

[12]  B. Stanton,et al.  Illicit drug initiation among institutionalized drug users in China. , 2002, Addiction.

[13]  Gang Huang,et al.  Lyapunov Functionals for Delay Differential Equations Model of Viral Infections , 2010, SIAM J. Appl. Math..

[14]  J. Hale Theory of Functional Differential Equations , 1977 .

[15]  G. P. Samanta,et al.  Dynamic behaviour for a nonautonomous heroin epidemic model with time delay , 2011 .

[16]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[17]  Brian Straughan,et al.  A note on heroin epidemics. , 2009, Mathematical biosciences.

[18]  Odd Hordvin,et al.  The Drug Situation in Norway 2011 : Annual report to the European Monitoring Centre for Drugs and Drug Addiction - EMCDDA , 2009 .

[19]  Matt Anderson,et al.  European Monitoring Centre for Drugs and Drug Addiction , 2014 .

[20]  Andrei Korobeinikov,et al.  Stability of ecosystem: global properties of a general predator-prey model. , 2009, Mathematical medicine and biology : a journal of the IMA.

[21]  Norman T. J. Bailey,et al.  The Mathematical Theory of Infectious Diseases , 1975 .

[22]  D. Vlahov,et al.  Rapid transmission of hepatitis C virus among young injecting heroin users in Southern China. , 2004, International journal of epidemiology.

[23]  Gang Huang,et al.  A note on global stability for a heroin epidemic model with distributed delay , 2013, Appl. Math. Lett..

[24]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[25]  S. Faraone,et al.  Genome‐wide linkage analysis of heroin dependence in Han Chinese: Results from wave one of a multi‐stage study , 2006, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[26]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[27]  E. White,et al.  Heroin epidemics, treatment and ODE modelling. , 2007, Mathematical biosciences.

[28]  E Ackerman,et al.  Stochastic two-agent epidemic simulation models for a community of families. , 1971, American journal of epidemiology.