Transparent Boundary Conditions for the Time-Dependent Schr\"odinger Equation with a Vector Potential

We consider the problem of constructing transparent boundary conditions for the time-dependent Schr\"odinger equation with a compactly supported binding potential and, if desired, a spatially uniform, time-dependent electromagnetic vector potential. Such conditions prevent nonphysical boundary effects from corrupting a numerical solution in a bounded computational domain. We use ideas from potential theory to build exact nonlocal conditions for arbitrary piecewise-smooth domains. These generalize the standard Dirichlet-to-Neumann and Neumann-to-Dirichlet maps known for the equation in one dimension without a vector potential. When the vector potential is included, the condition becomes non-convolutional in time. For the one-dimensional problem, we propose a simple discretization scheme and a fast algorithm to accelerate the evaluation of the boundary condition.

[1]  Eleftherios N. Economou,et al.  Green's functions in quantum physics , 1979 .

[2]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[3]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[4]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[5]  Leslie Greengard,et al.  A Fast Adaptive Numerical Method for Stiff Two-Point Boundary Value Problems , 1997, SIAM J. Sci. Comput..

[6]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[7]  Igor V. Puzynin,et al.  Integral boundary conditions for the time-dependent Schrödinger equation: Atom in a laser field , 1999 .

[8]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[9]  Achim Schädle,et al.  Non-reflecting boundary conditions for the two-dimensional Schrödinger equation , 2002 .

[10]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .

[11]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[12]  Houde Han,et al.  Exact artificial boundary conditions for the Schrödinger equation in $R ^2$ , 2004 .

[13]  Houde Han,et al.  EXACT ARTIFICIAL BOUNDARY CONDITIONS FOR SCHRÖDINGER EQUATION IN R2∗ , 2004 .

[14]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[15]  Houde Han,et al.  Numerical solutions of Schrödinger equations in ℝ3 , 2007 .

[16]  M. Rahman,et al.  Integral Equations and Their Applications , 2007 .

[17]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[18]  Leslie Greengard,et al.  Efficient representation of nonreflecting boundary conditions for the time‐dependent Schrödinger equation in two dimensions , 2008 .

[19]  André D. Bandrauk,et al.  Mathematical modeling of boundary conditions for laser‐molecule time‐dependent Schrödinger equations and some aspects of their numerical computation—One‐dimensional case , 2009 .

[20]  Laurent Demanet,et al.  A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators , 2008, Multiscale Model. Simul..

[21]  Michael O'Neil,et al.  An algorithm for the rapid evaluation of special function transforms , 2010 .

[22]  R M Feshchenko,et al.  Exact transparent boundary condition for the parabolic equation in a rectangular computational domain. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schr ¨ odinger equation on circular domains , 2012 .

[24]  Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain. , 2013 .

[25]  R. Feshchenko,et al.  Exact transparent boundary condition for the three-dimensional Schrödinger equation in a rectangular cuboid computational domain. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Angel Rubio,et al.  Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries , 2014 .

[27]  Lexing Ying,et al.  Butterfly Factorization , 2015, Multiscale Model. Simul..

[28]  V. Vaibhav Transparent boundary condition for numerical modeling of intense laser-molecule interaction , 2015, J. Comput. Phys..

[29]  Armin Scrinzi,et al.  Perfect absorption in Schrödinger-like problems using non-equidistant complex grids , 2015, J. Comput. Phys..

[30]  Xavier Antoine,et al.  A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations , 2017 .

[31]  A. Popov,et al.  Exact transparent boundary conditions for the parabolic wave equations with linear and quadratic potentials , 2016, 1610.08967.

[32]  Xavier Antoine,et al.  Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains , 2018, Comput. Phys. Commun..