Zsyntax: A Formal Language for Molecular Biology with Projected Applications in Text Mining and Biological Prediction

We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word ζωή, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We present it as a first step towards a comprehensive formal language for molecular biology in which any biological process can be written and analyzed as a sort of logical “deduction”. Moreover, we illustrate the potential value of this language, both in the field of text mining and in that of biological prediction.

[1]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[2]  Walter Fontana Systems biology, models, and concurrency , 2008, POPL '08.

[3]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[4]  Krysia Broda,et al.  Tableau Methods for Substructural Logics , 1999 .

[5]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[6]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[7]  Diego Calvanese,et al.  The description logic handbook: theory , 2003 .

[8]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[9]  H. Wansing Substructural logics , 1996 .

[10]  Joanne S. Luciano,et al.  PAX of mind for pathway researchers. , 2005, Drug discovery today.

[11]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[12]  M. Oren,et al.  mdm2 expression is induced by wild type p53 activity. , 1993, The EMBO journal.

[13]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[14]  François Fages,et al.  Formal Cell Biology in Biocham , 2008, SFM.

[15]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[16]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[17]  Julio Saez-Rodriguez,et al.  A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks , 2006, BMC Bioinformatics.

[18]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[19]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[20]  Michael R. Seringhaus,et al.  Seeking a New Biology through Text Mining , 2008, Cell.

[21]  Ehud Shapiro,et al.  Cells as Computation , 2003, CMSB.

[22]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[23]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[24]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Albert,et al.  Dynamics of complex systems: scaling laws for the period of boolean networks , 2000, Physical review letters.

[26]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[27]  M. di Bernardo,et al.  Comparing different ODE modelling approaches for gene regulatory networks. , 2009, Journal of theoretical biology.

[28]  Lennart Martens,et al.  The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.

[29]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .

[30]  Gabriel Ciobanu,et al.  Modelling in Molecular Biology , 2004, Natural Computing Series.

[31]  M Rizzotti,et al.  Axiomatization of genetics 2. Formal development. , 1986, Journal of theoretical biology.

[32]  Ernst Dieter Gilles,et al.  ALC: automated reduction of rule-based models , 2008, BMC Systems Biology.

[33]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[34]  V. Adler,et al.  Mdm2 association with p53 targets its ubiquitination , 1998, Oncogene.

[35]  K. Sakaguchi,et al.  Damage-mediated Phosphorylation of Human p53 Threonine 18 through a Cascade Mediated by a Casein 1-like Kinase , 2000, The Journal of Biological Chemistry.

[36]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[37]  M. Oren,et al.  Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. , 1993, Oncogene.

[38]  M Rizzotti,et al.  Axiomatization of genetics. 1. Biological meaning. , 1986, Journal of theoretical biology.

[39]  J. Haldane The Axiomatic Method in Biology , 1938, Nature.

[40]  T. Unger,et al.  The Mdm2 Oncoprotein Interacts with the Cell Fate Regulator Numb , 1998, Molecular and Cellular Biology.

[41]  Pier Paolo Di Fiore,et al.  NUMB controls p53 tumour suppressor activity , 2008, Nature.

[42]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[43]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[44]  Reinhart Heinrich,et al.  Patterns of interactions of reaction pairs in metabolic networks. , 2006, Genome informatics. International Conference on Genome Informatics.

[45]  Jean François Pique,et al.  About Natural Logic , 1979, Advances in Data Base Theory.

[46]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[47]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[48]  William S. Hlavacek,et al.  Graphical rule-based representation of signal-transduction networks , 2005, SAC '05.

[49]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .