Shooting Mechanisms in Nature: A Systematic Review

Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill. Methods We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting. Results Shooting mechanisms were identified with projectile masses ranging from 1·10−9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi), or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals), or water evaporation from the system (reaching up to −197 atmospheres; observed in plants and fungi). The generated energy is stored as elastic (potential) energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1) in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum) by compression of the spore and droplets and (2) in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in cnidarians, the launch velocities from 0.1 m/s in the fungal phylum Basidiomycota to 237 m/s in the mulberry Morus alba, and the launch distances from a few thousands of a millimeter in Basidiomycota to 60 m in the rainforest tree Tetraberlinia moreliana. The mass-specific power outputs range from 0.28 W/kg in the water evaporation mechanism in Basidiomycota to 1.97·109 W/kg in cnidarians using water absorption as energy source. Discussion and conclusions The magnitude of accelerations involved in shooting is generally scale-dependent with the smaller the systems, discharging the microscale projectiles, generating the highest accelerations. The mass-specific power output is also scale dependent, with smaller mechanisms being able to release the energy for shooting faster than larger mechanisms, whereas the mass-specific work delivered by the shooting mechanism is mostly independent of the scale of the shooting mechanism. Higher mass-specific work-values are observed in osmosis-powered shooting mechanisms (≤ 4,137 J/kg) when compared to muscle-powered mechanisms (≤ 1,269 J/kg). The achieved launch parameters acceleration, velocity, and distance, as well as the associated delivered power output and work, thus depend on the working principle and scale of the shooting mechanism.

[1]  H. Berg Differential seed dispersal in Oxalis acetosella,a cleistogamous perennial herb , 2000 .

[2]  R. L. Caldwell,et al.  Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus , 2005, Journal of Experimental Biology.

[3]  S. M. Deban,et al.  Temperature effects on the biomechanics of prey capture in the frog Rana pipiens. , 2012, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[4]  T. Higham,et al.  Springs, steroids, and slingshots: the roles of enhancers and constraints in animal movement , 2013, Journal of Comparative Physiology B.

[5]  F. Trail,et al.  The mechanism of ascus firing – Merging biophysical and mycological viewpoints , 2014 .

[6]  E. Pacini,et al.  Fruit and seed structural characteristics and seed dispersal in Mercurialis annua L. (Euphorbiaceae) , 2014 .

[7]  S. M. Deban,et al.  Metamorphosis and evolution of feeding behaviour in salamanders of the family Plethodontidae , 2002 .

[8]  N. Stamp,et al.  Ecological correlates of explosive seed dispersal , 1983, Oecologia.

[9]  Johan L van Leeuwen,et al.  Extremely high-power tongue projection in plethodontid salamanders , 2007, Journal of Experimental Biology.

[10]  A. Bowling,et al.  The mechanism for explosive seed dispersal in Cardamine hirsuta (Brassicaceae). , 2011, American journal of botany.

[11]  D. Wake,et al.  Tongue evolution in the lungless salamanders, family plethodontidae I. Introduction, theory and a general model of dynamics , 1976, Journal of morphology.

[12]  Malcolm Burrows,et al.  Biomechanics: Froghopper insects leap to new heights , 2003, Nature.

[13]  Sylvia Yang,et al.  Surface tension propulsion of fungal spores , 2009, Journal of Experimental Biology.

[14]  C. Gans,et al.  Mechanisms of tongue protraction and narial closure in the marine toad Bufo marinus. , 1996, The Journal of experimental biology.

[15]  Kurt Schwenk,et al.  Feeding : form, function, and evolution in tetrapod vertebrates , 2000 .

[16]  Mark W. F. Fischer,et al.  How far and how fast can mushroom spores fly? Physical limits on ballistospore size and discharge distance in the Basidiomycota. , 2010, Fungal biology.

[17]  Dwight L. Whitaker,et al.  The biomechanics of Cornus canadensis stamens are ideal for catapulting pollen vertically , 2007 .

[18]  D. Savile,et al.  Fungal Spores: Their Liberation and Dispersal , 1973 .

[19]  Todd H. Oakley,et al.  Cnidocyte discharge is regulated by light and opsin-mediated phototransduction , 2012, BMC Biology.

[20]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[21]  R. Marsh,et al.  The mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance. , 2001, The Journal of experimental biology.

[22]  J Dumais,et al.  The Fern Sporangium: A Unique Catapult , 2012, Science.

[23]  D. Meredith Spore Discharge in Deightoniella torulosa (Syd.) Ellis , 1961 .

[24]  S. Sundberg Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential. , 2010, Annals of botany.

[25]  D. Meredith Violent Spore Release in Some Fungi Imperfecti , 1963 .

[26]  D. Wake,et al.  CHAPTER 4 – Terrestrial Feeding in Salamanders , 2000 .

[27]  D. Wake,et al.  Tongue function in the salamander Bolitoglossa occident alis. , 1977, Archives of oral biology.

[28]  H. Cowles Researches on Fungi , 1911, Nature.

[29]  J. Kohlmeyer,et al.  Fungi on Juncus roemerianus. 6. Glomerobolus gen.nov., the first ballistic member of Agonomycetales. , 1996 .

[30]  R. Caldwell,et al.  Biomechanics: Deadly strike mechanism of a mantis shrimp , 2004, Nature.

[31]  Chase L. Beisel,et al.  Synthetic control of a fitness tradeoff in yeast nitrogen metabolism , 2009, Journal of biological engineering.

[32]  W. C. Sherbrooke,et al.  Prey snapping and visual distance estimation in Texas horned lizards, Phrynosoma cornutum , 2004, Journal of Experimental Biology.

[33]  Marcus Roper,et al.  Dispersal of fungal spores on a cooperatively generated wind , 2010, Proceedings of the National Academy of Sciences.

[34]  M. Vallejo‐Marín,et al.  Comparison of pollination and defensive buzzes in bumblebees indicates species-specific and context-dependent vibrations , 2014, Naturwissenschaften.

[35]  C. Mills,et al.  Novel cnidocysts of narcomedusae and a medusivorous ctenophore, and confirmation of kleptocnidism. , 1989, Tissue & Cell.

[36]  P. Tardent,et al.  Discharge and mode of action of the tentacular nematocysts of Anemonia sulcata (Anthozoa: Cnidaria) , 1988 .

[37]  D. Ellerby,et al.  The seed dispersal catapult of Cardamine parviflora (Brassicaceae) is efficient but unreliable. , 2010, American journal of botany.

[38]  Y. Boucher,et al.  Integron Gene Cassettes: A Repository of Novel Protein Folds with Distinct Interaction Sites , 2013, PloS one.

[39]  David B. Wake,et al.  Salamander with a ballistic tongue , 1997, Nature.

[40]  K. Nishikawa,et al.  Mechanism of tongue protraction in microhylid frogs , 2004, Journal of Experimental Biology.

[41]  T. Holstein,et al.  Morphology and morphodynamics of the stenotele nematocyst of Hydra attenuata Pall. (Hydrozoa, Cnidaria) , 2004, Cell and Tissue Research.

[42]  A. F. Bennett,et al.  The Mechanism of Tongue Projection in Chameleons: I. Electromyographic Tests of Functional Hypotheses , 1992 .

[43]  Christian Gieger,et al.  Correction: Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis , 2015, Nature Communications.

[44]  Christopher V. Anderson Off like a shot: scaling of ballistic tongue projection reveals extremely high performance in small chameleons , 2016, Scientific Reports.

[45]  D. Fautin Structural diversity, systematics, and evolution of cnidae. , 2009, Toxicon : official journal of the International Society on Toxinology.

[46]  M. D. Swaine,et al.  EXPLOSIVE SEED DISPERSAL IN HURA CREPITANS L. (EUPHORBIACEAE) , 1977 .

[47]  Ursula Dicke,et al.  Activation patterns of the tongue-projector muscle during feeding in the imperial cave salamander Hydromantes imperialis , 2004, Journal of Experimental Biology.

[48]  D. Wake,et al.  Tongue Evolution in the Lungless Salamanders, Family Plethodontidae IV. Phylogeny of Plethodontid Salamanders and the Evolution of Feeding Dynamics , 1986 .

[49]  J. Telleria [Mechanism of muscular contraction]. , 1951, Medicina.

[50]  D J Aneshansley,et al.  Defensive spray of the bombardier beetle: a biological pulse jet. , 1990, Science.

[51]  T. Holstein,et al.  Cnidocyst structure and the biomechanics of discharge. , 2009, Toxicon : official journal of the International Society on Toxinology.

[52]  Dicke,et al.  Motor control of tongue movement during prey capture in plethodontid salamanders , 1999, The Journal of experimental biology.

[53]  R. Chase The function of dart shooting in helicid snails* , 2007 .

[54]  R. Dillaman Dart formation in Helix aspersa (Mollusca, Gastropoda) , 1981, Zoomorphology.

[55]  Sander Kranenbarg,et al.  Power at the Tip of the Tongue , 2004, Science.

[56]  Anne Pringle,et al.  The captured launch of a ballistospore. , 2005, Mycologia.

[57]  B. Santos,et al.  Primary dispersal of Cytisus multiflorus seeds , 1992 .

[58]  F. G. Hawksworth,et al.  Ballistics of Dwarf Mistletoe Seeds , 1959, Science.

[59]  S. Patek,et al.  MODULARITY AND SCALING IN FAST MOVEMENTS: POWER AMPLIFICATION IN MANTIS SHRIMP , 2011, Evolution; international journal of organic evolution.

[60]  J. Schneller,et al.  Speed and force of spore ejection in Selaginella martensii , 2008, Botanica Helvetica.

[61]  Johan L. van Leeuwen,et al.  Why the chameleon has spiral-shaped muscle fibres in its tongue , 1997 .

[62]  K. Nishikawa,et al.  The scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus. , 2014, Zoology.

[63]  D. J. Davis,et al.  The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi , 2008, PloS one.

[64]  F. A. Wolf Mechanism of Apothecial Opening and Ascospore Expulsion by the Cup-Fungus Urnula Craterium , 1958 .

[65]  Robert D Deegan,et al.  Finessing the fracture energy barrier in ballistic seed dispersal , 2012, Proceedings of the National Academy of Sciences.

[66]  R. Page Sporangium Discharge in Pilobolus: A Photographic Study , 1964, Science.

[67]  Thomas Speck,et al.  Sporangium Exposure and Spore Release in the Peruvian Maidenhair Fern (Adiantum peruvianum, Pteridaceae) , 2015, PloS one.

[68]  Steven Vogel,et al.  Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum). , 2005, Fungal genetics and biology : FG & B.

[69]  C. Bouchard,et al.  The regulation of cnidocyte discharge. , 2009, Toxicon : official journal of the International Society on Toxinology.

[70]  M. Schilthuizen,et al.  A Syringe-Like Love Dart Injects Male Accessory Gland Products in a Tropical Hermaphrodite , 2013, PloS one.

[71]  K. Nishikawa,et al.  Comparative study of tongue protrusion in three iguanian lizards, Sceloporus undulatus, Pseudotrapelus sinaitus and Chamaeleo jacksonii. , 2000, The Journal of experimental biology.

[72]  J. Costello,et al.  Functional Characteristics of Nematocysts Found on the Scyphomedusa Cyanea Capillata , 2007 .

[73]  F. Trail Fungal cannons: explosive spore discharge in the Ascomycota. , 2007, FEMS microbiology letters.

[74]  H. Schulenburg,et al.  Shooting darts: co-evolution and counter-adaptation in hermaphroditic snails , 2005, BMC Evolutionary Biology.

[75]  Rachel E. Pepper,et al.  Explosively launched spores of ascomycete fungi have drag-minimizing shapes , 2008, Proceedings of the National Academy of Sciences.

[76]  Johan L. van Leeuwen,et al.  Evidence for an elastic projection mechanism in the chameleon tongue , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  R. Morabito,et al.  Sea Water Acidification Affects Osmotic Swelling, Regulatory Volume Decrease and Discharge in Nematocytes of the Jellyfish Pelagia noctiluca , 2013, Cellular Physiology and Biochemistry.

[78]  Christopher V. Anderson,et al.  Thermal effects on the performance, motor control and muscle dynamics of ballistic feeding in the salamander Eurycea guttolineata , 2014, Journal of Experimental Biology.

[79]  S N Patek,et al.  Linkage mechanics and power amplification of the mantis shrimp's strike , 2007, Journal of Experimental Biology.

[80]  Michael H. Dickinson,et al.  High-speed pollen release in the white mulberry tree, Morus alba L , 2006, Sexual Plant Reproduction.

[81]  Michael V. Rosario,et al.  Comparative spring mechanics in mantis shrimp , 2013, Journal of Experimental Biology.

[82]  W. Kier,et al.  A kinematic analysis of tentacle extension in the squid Loligo pealei , 1997, The Journal of experimental biology.

[83]  Johan L van Leeuwen,et al.  Evidence for an elastic projection mechanism in the chameleon tongue. , 2004, Proceedings. Biological sciences.

[84]  K. Gull,et al.  Detailed interrogation of trypanosome cell biology via differential organelle staining and automated image analysis , 2012, BMC Biology.

[85]  A. Beattie,et al.  Seed dispersal in Viola (Violaceae): adaptations and strategies , 1975 .

[86]  Comparison of isometric contractile properties of the tongue muscles in three species of frogs, Litoria caerulea,Dyscophus guinetti, and Bufo marinus , 1999, Journal of morphology.

[87]  Marika Hayashi,et al.  The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis) , 2009, Journal of experimental botany.

[88]  S. M. Deban,et al.  Cold-blooded snipers: thermal independence of ballistic tongue projection in the salamander Hydromantes platycephalus. , 2011, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[89]  S. Turner,et al.  Comparative Biomechanics: Life's Physical World (2nd ed.). , 2014 .

[90]  F. G. Hawksworth,et al.  Seed Dispersal Velocity in Four Dwarfmistletoes , 1965, Science.

[91]  Noah Hafner,et al.  A data efficient method for characterization of chameleon tongue motion using Doppler radar , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[92]  F. Hildebrand Die Verbreitungsmittel Der Pflanzen , 2011 .

[93]  D. J. Davis,et al.  New information on the mechanism of forcible ascospore discharge from Ascobolus immersus. , 2004, Fungal genetics and biology : FG & B.

[94]  Brian W. Geils,et al.  Modelling dwarf mistletoe at three scales: life history, ballistics and contagion , 2006 .

[95]  S N Patek,et al.  Strike mechanics of an ambush predator: the spearing mantis shrimp , 2012, Journal of Experimental Biology.

[96]  Mark W. F. Fischer,et al.  Biomechanics of Spore Release in Phytopathogens , 2009 .

[97]  Christopher V. Anderson,et al.  Ballistic tongue projection in chameleons maintains high performance at low temperature , 2010, Proceedings of the National Academy of Sciences.

[98]  Puncture mechanics of cnidarian cnidocysts: a natural actuator , 2009, Journal of biological engineering.

[99]  Marcus L. Roper,et al.  A natural O-ring optimizes the dispersal of fungal spores , 2013, Journal of The Royal Society Interface.

[100]  S. Pressel,et al.  Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. , 2009, The New phytologist.

[101]  H. Nagai,et al.  Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish , 2015, PloS one.

[102]  K. Nishikawa,et al.  Storage and recovery of elastic potential energy powers ballistic prey capture in toads , 2006, Journal of Experimental Biology.

[103]  Yoël Forterre,et al.  Slow, fast and furious: understanding the physics of plant movements. , 2013, Journal of experimental botany.

[104]  Daniel S. Chapman,et al.  Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle) , 2012 .

[105]  T. Speck,et al.  Mechanics without muscle: biomechanical inspiration from the plant world. , 2010, Integrative and comparative biology.

[106]  Christopher V. Anderson,et al.  Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons , 2012, Journal of Experimental Biology.

[107]  C. Anderson,et al.  Contribution of the submentalis muscle to feeding mechanics in the leopard frog, Rana pipiens. , 2004, Journal of experimental zoology. Part A, Comparative experimental biology.

[108]  Johan L. van Leeuwen Launched at 36,000g , 2010 .

[109]  D. J. Davis,et al.  Adaptation of the Spore Discharge Mechanism in the Basidiomycota , 2009, PloS one.

[110]  Graham N Askew,et al.  Muscle designed for maximum short-term power output: quail flight muscle. , 2002, The Journal of experimental biology.

[111]  Timm Nüchter,et al.  Nanosecond-scale kinetics of nematocyst discharge , 2006, Current Biology.

[112]  A. Loukas,et al.  Venom Proteome of the Box Jellyfish Chironex fleckeri , 2012, BMC Genomics.

[113]  Leandro Beltrachini,et al.  Neural Processing of Emotional Facial and Semantic Expressions in Euthymic Bipolar Disorder (BD) and Its Association with Theory of Mind (ToM) , 2012, PloS one.

[114]  R. M. Alexander,et al.  Tendon elasticity and muscle function. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[115]  F. G. Hawksworth,et al.  Seed Discharge in Arceuthobium: A Photographic Study , 1963, Science.

[116]  A. Lappin,et al.  Thermal effects on the dynamics and motor control of ballistic prey capture in toads: maintaining high performance at low temperature , 2011, Journal of Experimental Biology.

[117]  J. Turner,et al.  Mass and momentum transfer on the small scale : how do mushrooms shed their spores ? , 1991 .

[118]  K. Nishikawa,et al.  The Evolution of the Motor Control of Feeding in Amphibians1 , 2001 .

[119]  E. Wagner,et al.  Comparison of Discharge Mechanisms of Cnidarian Cnidae and Myxozoan Polar Capsules , 2003 .

[120]  Xander M. Van Der Burgt,et al.  Explosive seed dispersal of the rainforest tree Tetraberlinia moreliana (Leguminosae – Caesalpinioideae) in Gabon , 1997, Journal of Tropical Ecology.

[121]  J. Dumais,et al.  Explosive dispersal and self-burial in the seeds of the filaree, ERodium cicutarium (Geraniaceae) , 2013 .

[122]  N. P. Money More g's than the Space Shuttle: ballistospore discharge , 1998 .

[123]  L. Rome,et al.  Built for jumping: the design of the frog muscular system. , 1994, Science.

[124]  D. Whitaker,et al.  Botany: A record-breaking pollen catapult , 2005, Nature.

[125]  Feeding kinematics of phyllomedusine tree frogs. , 1995, The Journal of experimental biology.

[126]  K. Nishikawa Neuromuscular control of prey capture in frogs. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[127]  Alain Goriely,et al.  The elastic secrets of the chameleon tongue , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[128]  K. Ross,et al.  Thermogenesis-triggered seed dispersal in dwarf mistletoe , 2015, Nature Communications.

[129]  L. A. Souza,et al.  Anatomy of the developing fruit of Metrodorea nigra A. St.-Hil. (Rutaceae) , 2008 .

[130]  D. Whitaker,et al.  Sphagnum Moss Disperses Spores with Vortex Rings , 2010, Science.

[131]  D. J. Davis,et al.  Solving the aerodynamics of fungal flight: how air viscosity slows spore motion. , 2010, Fungal biology.

[132]  K. Schulgasser,et al.  THE MECHANICS OF SEED EXPULSION IN ACANTHACEAE , 1995 .

[133]  L. Mahadevan,et al.  Physical Limits and Design Principles for Plant and Fungal Movements , 2005, Science.

[134]  S. W. Schoombie,et al.  The "firing cannons" of Dipodascopsis uninucleata var. uninucleata. , 2013, Canadian journal of microbiology.

[135]  G. Hays,et al.  Identification of genetically and oceanographically distinct blooms of jellyfish , 2013, Journal of The Royal Society Interface.

[136]  Ballistic seed dispersal inIllicium (Illiciaceae) , 1983, Plant Systematics and Evolution.

[137]  A. R. The Dispersal of Plants throughout the World , 1931, Nature.

[138]  Dimitra Dodou,et al.  Buckling prevention strategies in nature as inspiration for improving percutaneous instruments: a review , 2016, Bioinspiration & biomimetics.

[139]  J. Ackerman,et al.  Unintended Consequences of Management Actions in Salt Pond Restoration: Cascading Effects in Trophic Interactions , 2015, PloS one.

[140]  Steven Vogel,et al.  Living in a physical world II. The bio-ballistics of small projectiles , 2005, Journal of Biosciences.

[141]  A. King The Spore Discharge Mechanism of Common Ferns. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Steven Vogel,et al.  Comparative Biomechanics: Life's Physical World , 2003 .

[143]  Mark W. F. Fischer,et al.  Splash and grab: biomechanics of peridiole ejection and function of the funicular cord in bird's nest fungi. , 2013, Fungal biology.

[144]  P. Koomen,et al.  A biomechanical analysis of spitting in archer fishes (Pisces, Perciformes, Toxidae) , 1985, Zoomorphology.

[145]  Prey location, biomechanical constraints, and motor program choice during prey capture in the tomato frog, Dyscophus guineti , 2009, Journal of Comparative Physiology A.

[146]  P. Aerts,et al.  Functional implications of supercontracting muscle in the chameleon tongue retractors. , 2001, The Journal of experimental biology.

[147]  H. Ridley,et al.  The dispersal of plants throughout the world , 1931 .