Hypervelocity impact of TiB2-based composites as front bumpers for space shield applications

[1]  Eric L. Christiansen,et al.  Enhanced meteoroid and orbital debris shielding , 1995 .

[2]  M. Lambert,et al.  Hypervelocity impacts and damage laws , 1997 .

[3]  William P. Schonberg,et al.  Protecting spacecraft against orbital debris impact damage using composite materials , 2000 .

[4]  Justin H. Kerr,et al.  A history of meteoroid and orbital debris impacts on the Space Shuttle , 2001 .

[5]  M. Nygren,et al.  Titanium–titanium diboride composites as part of a gradient armour material , 2005 .

[6]  N. Johnson,et al.  Risks in Space from Orbiting Debris , 2006, Science.

[7]  Eric L. Christiansen,et al.  Honeycomb vs. foam: Evaluating potential upgrades to ISS module shielding , 2010 .

[8]  Ye Li,et al.  On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target , 2010 .

[9]  Shannon Ryan,et al.  A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris , 2011 .

[10]  Eric L. Christiansen,et al.  Performance of Whipple shields at impact velocities above 9 km/s , 2011 .

[11]  E. Sato,et al.  Fracture behavior of silicon nitride ceramics subjected to hypervelocity impact , 2011 .

[12]  Alessandro Francesconi,et al.  Effects of high-speed impacts on CFRP plates for space applications , 2012 .

[13]  Aidy Ali,et al.  Ballistic impact performance of Kevlar-29 and Al2O3 powder/epoxy targets under high velocity impact , 2012 .

[14]  L. Dai,et al.  Amorphous alloy reinforced Whipple shield structure , 2012 .

[15]  Chun Yin,et al.  Microstructure transformation and mechanical properties of TiC–TiB2 ceramics prepared by combustion synthesis in high gravity field , 2012 .

[16]  M. Burchell,et al.  A New Online Resource for the Hypervelocity Impact Community and the Change of Debris Cloud Impact Patterns With Impact Velocity , 2013 .

[17]  Eric L. Christiansen,et al.  Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding , 2013 .

[18]  A. Rafie,et al.  High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels , 2013 .

[19]  Douglas C. Hofmann,et al.  Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding , 2013 .

[20]  S. Bai,et al.  Shielding performances of the designed hybrid laminates impacted by hypervelocity flyer , 2013 .

[21]  Li Ma,et al.  Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact , 2013 .

[22]  O. Keles,et al.  The ballistic performance of SiC–AA7075 functionally graded composite produced by powder metallurgy , 2014 .

[23]  Douglas C. Hofmann,et al.  Hypervelocity Impact Phenomenon in Bulk Metallic Glasses and Composites** , 2014 .

[24]  Douglas C. Hofmann,et al.  Hypervelocity Impact Testing of a Metallic Glass‐Stuffed Whipple Shield , 2015 .

[25]  Chun Yin,et al.  Combustion Synthesis of TiB2-TiC/42CrMo4 Composites with Gradient Joint Prepared in Different High-Gravity Fields , 2015, Journal of Materials Engineering and Performance.

[26]  Jie Huang,et al.  Fusion bonding and microstructure formation in TiB2-based ceramic/metal composite materials fabricated by combustion synthesis under high gravity , 2015, Journal of Advanced Ceramics.

[27]  S. Hasegawa,et al.  Comparison of Aluminum Alloy and CFRP Bumpers for Space Debris Protection , 2015 .

[28]  Tao Liu,et al.  Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield , 2016 .