MASS–RADIUS RELATION FOR ROCKY PLANETS BASED ON PREM

Several small dense exoplanets are now known, inviting comparisons to Earth and Venus. Such comparisons require translating their masses and sizes to composition models of evolved multi-layer-interior planets. Such theoretical models rely on our understanding of the Earth's interior, as well as independently derived equations of state (EOS), but have so far not involved direct extrapolations from Earth's seismic model -PREM. In order to facilitate more detailed compositional comparisons between small exoplanets and the Earth, we derive here a semi-empirical mass-radius relation for two-layer rocky planets based on PREM: ${\frac{R}{R_\oplus}} = (1.07-0.21\cdot \text{CMF})\cdot (\frac{M}{M_\oplus})^{1/3.7}$, where CMF stands for Core Mass Fraction. It is applicable to 1$\sim$8 M$_{\oplus}$ and CMF of 0.0$\sim$0.4. Applying this formula to Earth and Venus and several known small exoplanets with radii and masses measured to better than $\sim$30\% precision gives a CMF fit of $0.26\pm0.07$.

[1]  Renata M. Wentzcovitch,et al.  Two-stage dissociation in MgSiO3 post-perovskite , 2011 .

[2]  S. Seager,et al.  A Computational Tool to Interpret the Bulk Composition of Solid Exoplanets based on Mass and Radius Measurements , 2008, 0808.1916.

[3]  B. Pagel Nucleosynthesis and Chemical Evolution of Galaxies: Frontmatter , 2009 .

[4]  Jason T. Wright,et al.  The 55 Cancri planetary system: fully self-consistent N-body constraints and a dynamical analysis , 2014, 1402.6343.

[5]  E. Salpeter,et al.  Theoretical high-pressure equations of state including correlation energy. , 1967 .

[6]  David Charbonneau,et al.  KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST CASE FOR A NEW SPITZER OBSERVING MODE , 2014, 1405.3659.

[7]  U. Ott Presolar Grains in Meteorites and Their Compositions , 2007 .

[8]  L. Taylor,et al.  Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation , 1997 .

[9]  H. F. Astrophysics,et al.  Internal structure of massive terrestrial planets , 2005, astro-ph/0511150.

[10]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[11]  Andrew Szentgyorgyi,et al.  An Earth-sized planet with an Earth-like density , 2013, Nature.

[12]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[13]  S. Jacobsen,et al.  Differentiation of metal‐rich meteoritic parent bodies: I. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe‐Ni metal , 2004 .

[14]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[15]  Abundances of refractory elements in the atmospheres of stars with extrasolar planets , 2005, astro-ph/0512219.

[16]  D. Antonangeli,et al.  Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth's core , 2007 .

[17]  Jaymie M. Matthews,et al.  CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454 , 2014, 1412.5674.

[18]  W. Anderson,et al.  An equation of state for liquid iron and implications for the Earth's core , 1994 .

[19]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[20]  Lianmeng Zhang,et al.  Evidence for an oxygen-depleted liquid outer core of the Earth , 2011, Nature.

[21]  David J. Wilson,et al.  The Composition Of A Disrupted Extrasolar Planetesimal At SDSS J0845+2257 (Ton 345) , 2015, 1505.07466.

[22]  Radius and Structure Models of the First Super-Earth Planet , 2006, astro-ph/0610122.

[23]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[24]  G. Morard,et al.  Density profile of pyrolite under the lower mantle conditions , 2009 .

[25]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[26]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[27]  Andrew Szentgyorgyi,et al.  THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET , 2014, 1405.7881.

[28]  V. Prakapenka,et al.  Equation of state and phase diagram of Fe–16Si alloy as a candidate component of Earth's core , 2012 .

[29]  Howard Isaacson,et al.  KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS , 2011, 1110.0820.

[30]  H. Y. McSween,et al.  1.22 – Mars , 2007 .

[31]  Cambridge,et al.  A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses , 2013, 1301.0818.

[32]  P. Young,et al.  THE CHEMICAL COMPOSITION OF τ CETI AND POSSIBLE EFFECTS ON TERRESTRIAL PLANETS , 2015, 1503.04189.

[33]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[34]  Marseille,et al.  Revisiting the transits of CoRoT-7b at a lower activity level , 2014, 1407.8099.

[35]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[36]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[37]  R. Cohen,et al.  Composition and temperature of Earth's inner core , 1997 .

[38]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[39]  David E. Smith,et al.  Constraints on Vesta's Interior Structure Using Gravity and Shape Models from the Dawn Mission , 2014 .

[40]  C. Bina 2.02 – Seismological Constraints upon Mantle Composition , 2003 .

[41]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[42]  Salvatore Barba,et al.  Physics of the Earth and Planetary Interiors , 2011 .

[43]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[44]  M. Torrent,et al.  Quasihydrostatic equation of state of iron above 2 Mbar. , 2006, Physical review letters.

[45]  Karl K. Turekian,et al.  Treatise on geochemistry , 2014 .

[46]  Tilman Spohn,et al.  Rocky super-Earth interiors. Structure and internal dynamics of CoRoT-7b and Kepler-10b , 2012 .

[47]  C. Unterborn,et al.  SCALING THE EARTH: A SENSITIVITY ANALYSIS OF TERRESTRIAL EXOPLANETARY INTERIOR MODELS , 2015, 1510.07582.

[48]  J. Eastman,et al.  MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH , 2013 .

[49]  JOHN S. Lewis Physics And Chemistry Of The Solar System , 1995 .

[50]  D. Yuen,et al.  Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed phase regions in the Deep Lower Mantle? , 2005 .

[51]  A. Collier Cameron,et al.  The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun , 2015 .

[52]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[53]  J. Poirier Light elements in the Earth's outer core: A critical review , 1994 .

[54]  K. Ho,et al.  Identification of post-pyrite phase transitions in SiO2 by a genetic algorithm , 2011 .

[55]  M. Gillan,et al.  Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data , 2002 .

[56]  R. Cohen,et al.  Ferrous iron in post-perovskite from first-principles calculations , 2008 .

[57]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[58]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[59]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[60]  B. Zuckerman,et al.  ELEMENTAL COMPOSITIONS OF TWO EXTRASOLAR ROCKY PLANETESIMALS , 2014, 1401.4252.

[61]  Guillaume Hebrard,et al.  THE MASS OF CoRoT-7b , 2011, 1105.3372.