THEO concept mission: Testing the Habitability of Enceladus’s Ocean

[1]  J. Lunine,et al.  How Much Hydrothermal Hydrogen Might We Find in Enceladus' Plume? , 2016 .

[2]  F. Postberg,et al.  Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity , 2015 .

[3]  T. Hoolst,et al.  The obliquity of Enceladus , 2015, 1512.00285.

[4]  K. Mandt,et al.  Performance evaluation of a prototype multi-bounce time-of-flight mass spectrometer in linear mode and applications in space science , 2015 .

[5]  F. Postberg,et al.  High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus , 2015, Nature Communications.

[6]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[7]  Ralph D. Lorenz,et al.  Energy Cost of Acquiring and Transmitting Science Data on Deep-Space Missions , 2015 .

[8]  Amanda L. Nahm,et al.  A unified nomenclature for tectonic structures on the surface of Enceladus , 2015 .

[9]  R. McNutt,et al.  Cassini INMS measurements of Enceladus plume density , 2015 .

[10]  C. Porco,et al.  Timing of water plume eruptions on Enceladus explained by interior viscosity structure , 2015 .

[11]  Emily E. Berkson,et al.  Curtain eruptions from Enceladus’ south-polar terrain , 2015, Nature.

[12]  J. Waite,et al.  Possible evidence for a methane source in Enceladus' ocean , 2015 .

[13]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[14]  F. Postberg,et al.  Enceladus Life Finder: The search for life in a habitable Moon , 2015, 2016 IEEE Aerospace Conference.

[15]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[16]  Frances Westall,et al.  Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. , 2015, Environmental microbiology.

[17]  F. Postberg,et al.  Science goals and mission concept for the future exploration of Titan and Enceladus , 2014 .

[18]  Carolyn C. Porco,et al.  HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED , 2014 .

[19]  Christopher P McKay,et al.  Follow the plume: the habitability of Enceladus. , 2014, Astrobiology.

[20]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[21]  L. Dartnell,et al.  Planetary habitability: lessons learned from terrestrial analogues , 2014, International Journal of Astrobiology.

[22]  C. Sotin,et al.  The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover , 2013 .

[23]  R. H. Brown,et al.  An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.

[24]  John R. Spencer,et al.  Enceladus: An Active Ice World in the Saturn System , 2013 .

[25]  P. Schenk,et al.  Enceladus' extreme heat flux as revealed by its relaxed craters , 2012 .

[26]  A. Anbar,et al.  LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life. , 2012, Astrobiology.

[27]  J. Lunine,et al.  Modeling ammonia–ammonium aqueous chemistries in the Solar System’s icy bodies , 2012 .

[28]  G. Tobie,et al.  Tidally-induced melting events as the origin of south-pole activity on Enceladus , 2012 .

[29]  A. Ingersoll,et al.  Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images , 2011 .

[30]  M. Dougherty,et al.  Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data , 2011 .

[31]  D. A. Patthoff,et al.  A fracture history on Enceladus provides evidence for a global ocean , 2011 .

[32]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[33]  Robert A. West,et al.  The composition and structure of the Enceladus plume , 2011 .

[34]  M. Dougherty,et al.  Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus' Alfvén wings: Analytical modeling of Cassini magnetometer observations , 2011 .

[35]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[36]  C. Sotin,et al.  JET: a Journey to Enceladus and Titan , 2010 .

[37]  G. Tobie,et al.  Coupling mantle convection and tidal dissipation: Applications to Enceladus and Earth‐like planets , 2010 .

[38]  Robert A. Hanna,et al.  Identification and Classification of Common Risks in Space Science Missions , 2010 .

[39]  Nathan J. Strange,et al.  A fast tour design method using non-tangent v-infinity leveraging transfer , 2010 .

[40]  A. Barr,et al.  On the origin of south polar folds on Enceladus , 2010 .

[41]  U. Beckmann,et al.  How the Enceladus dust plume feeds Saturn’s E ring , 2010 .

[42]  A. Ingersoll,et al.  Subsurface heat transfer on Enceladus: Conditions under which melting occurs , 2010 .

[43]  Ö. Karatekin,et al.  Librational response of Enceladus , 2010 .

[44]  S. Kieffer,et al.  A redetermination of the ice/vapor ratio of Enceladus' plumes: Implications for sublimation and the lack of a liquid water reservoir , 2009 .

[45]  W. S. Lewis,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[46]  J. Lunine,et al.  FORMATION CONDITIONS OF ENCELADUS AND ORIGIN OF ITS METHANE RESERVOIR , 2009 .

[47]  Michael E. Brown,et al.  No sodium in the vapour plumes of Enceladus , 2009, Nature.

[48]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[49]  R. H. Brown,et al.  SPECTRAL OBSERVATIONS OF THE ENCELADUS PLUME WITH CASSINI-VIMS , 2009 .

[50]  E. Angelis,et al.  TandEM: Titan and Enceladus mission , 2009 .

[51]  C. McKay,et al.  The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. , 2008, Astrobiology.

[52]  C. Hansen,et al.  Water vapour jets inside the plume of gas leaving Enceladus , 2008, Nature.

[53]  Robert T. Pappalardo,et al.  Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations , 2008 .

[54]  Gabriel Tobie,et al.  Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .

[55]  Y. Yung,et al.  Habitability of Enceladus: Planetary Conditions for Life , 2008, Origins of Life and Evolution of Biospheres.

[56]  J. H. Roberts,et al.  Near‐surface heating on Enceladus and the south polar thermal anomaly , 2008 .

[57]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[58]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[59]  E. Grün,et al.  The E ring in the vicinity of Enceladus - I. Spatial distribution and properties of the ring particles , 2008 .

[60]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[61]  Carolyn C. Porco,et al.  Association of the jets of Enceladus with the warmest regions on its south-polar fractures , 2007, Nature.

[62]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[63]  E. Grün,et al.  The composition of Saturn's E ring , 2007 .

[64]  T. Encrenaz,et al.  MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .

[65]  M. Horányi,et al.  Signatures of Enceladus in Saturn's E ring , 2007 .

[66]  L. Esposito,et al.  Monte Carlo simulations of the water vapor plumes on Enceladus , 2007 .

[67]  Jonathan I. Lunine,et al.  Enceladus' plume: Compositional evidence for a hot interior , 2007 .

[68]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[69]  Barbara Sherwood Lollar,et al.  Is Mars alive , 2006 .

[70]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[71]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[72]  R. Jaumann,et al.  Composition and Physical Properties of Enceladus' Surface , 2006, Science.

[73]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[74]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[75]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[76]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[77]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[78]  J. E. Richards,et al.  The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation , 2004 .

[79]  Chris McKay,et al.  What Is Life—and How Do We Search for It in Other Worlds? , 2004, PLoS biology.

[80]  H. Roberts,et al.  Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes , 2004 .

[81]  Stanley L. Miller,et al.  The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide , 2002, Origins of life and evolution of the biosphere.

[82]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[83]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[84]  J. Richardson,et al.  Saturn's E Ring and Production of the Neutral Torus , 2001 .

[85]  Thomas M. McCollom,et al.  Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa , 1999 .

[86]  Jean-Pierre Lebreton,et al.  The Cassini/Huygens Mission to the Saturnian System , 1999 .

[87]  J. Horita,et al.  Abiogenic methane formation and isotopic fractionation under hydrothermal conditions , 1999, Science.

[88]  B. Simoneit,et al.  Abiotic Formation of Hydrocarbons and Oxygenated Compounds During Thermal Decomposition of Iron Oxalate , 1999, Origins of life and evolution of the biosphere.

[89]  M. Kamekura Diversity of extremely halophilic bacteria , 1998, Extremophiles.

[90]  C. Russell,et al.  Europa's magnetic signature: report from Galileo's pass on 19 December 1996. , 1997, Science.

[91]  L. Rothschild,et al.  METABOLIC ACTIVITY OF MICROORGANISMS IN EVAPORITES 1 , 1994, Journal of phycology.

[92]  Jonathan I. Lunine,et al.  Silicate interactions with ammonia‐water fluids on early Titan , 1994 .

[93]  A. Kiennemann,et al.  Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation , 1993 .

[94]  W. Grant,et al.  Survival of Halobacteria Within Fluid Inclusions in Salt Crystals , 1988 .

[95]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. , 1986, Geochimica et cosmochimica acta.

[96]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[97]  G. Danielson,et al.  Saturn's E ring: I. CCD observations of March 1980 , 1981 .

[98]  W. Feibelman Concerning the “D” Ring of Saturn , 1967, Nature.

[99]  J. Nuth,et al.  The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems. , 2003, Astrobiology.

[100]  Joseph Seckbach,et al.  Enigmatic Microorganisms and Life in Extreme Environments , 1999, Cellular Origin and Life in Extreme Habitats.

[101]  T. Hill Saturn's E ring , 1984 .