FoxA1 corrupts the antiandrogenic effect of bicalutamide but only weakly attenuates the effect of MDV3100 (Enzalutamide™)

[1]  Ville Paakinaho,et al.  Dynamic SUMOylation Is Linked to the Activity Cycles of Androgen Receptor in the Cell Nucleus , 2012, Molecular and Cellular Biology.

[2]  B. Haendler,et al.  Recent developments in antiandrogens and selective androgen receptor modulators , 2012, Molecular and Cellular Endocrinology.

[3]  G. Jenster,et al.  Androgen receptor coregulators: Recruitment via the coactivator binding groove , 2012, Molecular and Cellular Endocrinology.

[4]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.

[5]  T. Visakorpi,et al.  Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth , 2012, Molecular and Cellular Endocrinology.

[6]  I. Fernandes,et al.  Castration-Resistant Prostate Cancer: Mechanisms, Targets, and Treatment , 2012, Prostate cancer.

[7]  L. Neckers,et al.  Methoxychalcone inhibitors of androgen receptor translocation and function. , 2012, Bioorganic & medicinal chemistry letters.

[8]  Glen Kristiansen,et al.  Tumorigenesis and Neoplastic Progression FOXA 1 Promotes Tumor Progression in Prostate Cancer and Represents a Novel Hallmark of Castration-Resistant Prostate Cancer , 2012 .

[9]  Zhaoyu Li,et al.  Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer , 2012, Cell.

[10]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[11]  O. Kallioniemi,et al.  Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer , 2011, The EMBO journal.

[12]  S. Mandrup,et al.  Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis , 2011, The EMBO journal.

[13]  S. Badve,et al.  High‐level expression of forkhead‐box protein A1 in metastatic prostate cancer , 2011, Histopathology.

[14]  J. Stamatoyannopoulos,et al.  Chromatin accessibility pre-determines glucocorticoid receptor binding patterns , 2011, Nature Genetics.

[15]  J. Palvimo,et al.  Androgen receptor amplification is reflected in the transcriptional responses of Vertebral-Cancer of the Prostate cells , 2011, Molecular and Cellular Endocrinology.

[16]  J. Carroll,et al.  FOXA1 is a critical determinant of Estrogen Receptor function and endocrine response , 2010, Nature Genetics.

[17]  K. Kaestner,et al.  The FoxA factors in organogenesis and differentiation. , 2010, Current opinion in genetics & development.

[18]  S. Belikov,et al.  Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter. , 2009, Experimental cell research.

[19]  S. Belikov,et al.  FoxA1 Binding Directs Chromatin Structure and the Functional Response of a Glucocorticoid Receptor-Regulated Promoter , 2009, Molecular and Cellular Biology.

[20]  Clifford A. Meyer,et al.  Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer , 2009, Cell.

[21]  H. Scher,et al.  Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer , 2009, Science.

[22]  K. Waltering,et al.  Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells , 2008, Oncogene.

[23]  Clifford A. Meyer,et al.  FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription , 2008, Cell.

[24]  J. Stamatoyannopoulos,et al.  Interaction of the Glucocorticoid Receptor with the Chromatin Landscape , 2008, Molecular cell.

[25]  S. Balk,et al.  Review Nuclear Receptor Signaling | The Open Access Journal of the Nuclear Receptor Signaling Atlas AR, the cell cycle, and prostate cancer , 2022 .

[26]  K. Pienta,et al.  A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. , 2007, Molecular cell.

[27]  Hao Li,et al.  Determinants of Cell- and Gene-Specific Transcriptional Regulation by the Glucocorticoid Receptor , 2007, PLoS genetics.

[28]  S. Belikov,et al.  Mechanism of Histone H1-Stimulated Glucocorticoid Receptor DNA Binding In Vivo , 2007, Molecular and Cellular Biology.

[29]  Jérôme Eeckhoute,et al.  A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. , 2006, Genes & development.

[30]  L. Lim,et al.  Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. , 2006, RNA.

[31]  J. Wong,et al.  A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. , 2006, Molecular endocrinology.

[32]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[33]  K. Zaret,et al.  FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription. , 2005, Experimental cell research.

[34]  Per-Henrik Holmqvist,et al.  Nuclear Factor 1 and Octamer Transcription Factor 1 Binding Preset the Chromatin Structure of the Mouse Mammary Tumor Virus Promoter for Hormone Induction* , 2004, Journal of Biological Chemistry.

[35]  Per-Henrik Holmqvist,et al.  Chromatin-Mediated Restriction of Nuclear Factor 1/CTF Binding in a Repressed and Hormone-Activated Promoter In Vivo , 2004, Molecular and Cellular Biology.

[36]  Renjie Jin,et al.  The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. , 2003, Molecular endocrinology.

[37]  S. Hammes,et al.  Xenopus laevis Ovarian CYP17 Is a Highly Potent Enzyme Expressed Exclusively in Oocytes , 2003, The Journal of Biological Chemistry.

[38]  Frank R. Lin,et al.  Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. , 2002, Molecular cell.

[39]  S. Hammes,et al.  Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  O. Jänne,et al.  Disrupted amino- and carboxyl-terminal interactions of the androgen receptor are linked to androgen insensitivity. , 2001, Molecular endocrinology.

[41]  Sergey Belikov,et al.  Hormone‐induced nucleosome positioning in the MMTV promoter is reversible , 2001, The EMBO journal.

[42]  G. Almouzni,et al.  Hormone activation induces nucleosome positioning in vivo , 2000, The EMBO journal.

[43]  H. Scher,et al.  Steroid hormone withdrawal syndromes. Pathophysiology and clinical significance. , 1997, The Urologic clinics of North America.

[44]  M. Zernicka-Goetz,et al.  An indelible lineage marker for Xenopus using a mutated green fluorescent protein. , 1996, Development.

[45]  A. Wolffe,et al.  Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. , 1993, Genes & development.

[46]  E. Wilson,et al.  Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. , 1993, The Journal of biological chemistry.

[47]  R. Pictet,et al.  In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor , 1991, Cell.

[48]  H. Richard-Foy,et al.  Sequence‐specific positioning of nucleosomes over the steroid‐inducible MMTV promoter. , 1987, The EMBO journal.

[49]  Keith R. Yamamoto,et al.  Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element , 1984, Cell.

[50]  K. Yamamoto,et al.  Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Diggelmann,et al.  Cloned mouse mammary tumor virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones , 1981, Cell.

[52]  C. Huggins,et al.  Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. , 1941, CA: a cancer journal for clinicians.

[53]  Per-Henrik Holmqvist,et al.  FoxA1 and glucocorticoid receptor crosstalk via histone H4K16 acetylation at a hormone regulated enhancer. , 2012, Experimental cell research.

[54]  E. Wilson Analysis of interdomain interactions of the androgen receptor. , 2011, Methods in molecular biology.

[55]  R. Vessella,et al.  Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. , 2009, Cancer research.

[56]  R. Vessella,et al.  Molecular determinants of resistance to antiandrogen therapy , 2004, Nature Medicine.