Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

ABSTRACT In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all the estimators are fairly robust to conditionally heteroscedastic errors, (3) the local polynomial Whittle and bias-reduced log-periodogram regression estimators are shown to be more robust to short-run dynamics than other semiparametric (frequency domain and wavelet) estimators and in some cases even outperform the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.

[1]  H. Künsch Discrimination between monotonic trends and long-range dependence , 1986 .

[2]  H. R. Kuensch Statistical Aspects of Self-Similar Processes , 1986 .

[3]  Uwe Hassler,et al.  Long Memory in Inflation Rates: International Evidence , 1995 .

[4]  Turalay Kenc,et al.  Ox: An Object-Oriented Matrix Language , 1997 .

[5]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[6]  P. Robinson,et al.  Advances in Econometrics: Time series with strong dependence , 1994 .

[7]  C. Velasco,et al.  Non-stationary log-periodogram regression , 1999 .

[8]  Peter Whittle,et al.  Hypothesis Testing in Time Series Analysis. , 1951 .

[9]  Michael Hauser Maximum Likelihood Estimators for Arma and ARFIMA Models: A Monte Carlo Study , 1999 .

[10]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[11]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[12]  Francis X. Diebold,et al.  The Review of Economics and Statistics VOL . LXXIII FEBRUARY 1991 NUMBER 1 IS CONSUMPTION TOO SMOOTH ? LONG MEMORY AND THE DEATON PARADOX , 2008 .

[13]  Mark J. Jensen An Alternative Maximum Likelihood Estimator of Long-Memeory Processes Using Compactly Supported Wavelets , 1997 .

[14]  C. Velasco Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .

[15]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[16]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[17]  D. Andrews,et al.  VALID EDGEWORTH EXPANSIONS FOR THE WHITTLE MAXIMUM LIKELIHOOD ESTIMATOR FOR STATIONARY LONG-MEMORY GAUSSIAN TIME SERIES , 2002, Econometric Theory.

[18]  Pooled Log Periodogram Regression , 2000 .

[19]  P. Zaffaroni,et al.  The Long Range Dependence Paradigm for Macroeconomics and Finance , 2002 .

[20]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[21]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[22]  Fallaw Sowell Modeling long-run behavior with the fractional ARIMA model , 1992 .

[23]  F. Diebold,et al.  On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean , 1994 .

[24]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[25]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[26]  M. Nielsen EFFICIENT LIKELIHOOD INFERENCE IN NONSTATIONARY UNIVARIATE MODELS , 2002, Econometric Theory.

[27]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[28]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[29]  Glenn D. Rudebusch,et al.  Long Memory and Persistence in Aggregate Output , 1989, Business Cycles.

[30]  J. R. Wallis,et al.  Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .

[31]  F. Diebold,et al.  Real Exchange Rates under the Gold Standard , 1991, Journal of Political Economy.

[32]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[33]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[34]  Michael A. Hauser,et al.  Semiparametric and nonparametric testing for long memory: A Monte Carlo study , 1997 .

[35]  Mark J. Jensen An Approximate Wavelet MLE of Short- and Long-Memory Parameters , 1999 .

[36]  J. Rousseau,et al.  Valid Asymptotic Expansions for the Maximum Likelihood Estimator of the Parameter of a Stationary, Gaussian, Strongly Dependent Process , 2002 .

[37]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[38]  P. Robinson,et al.  Testing of unit root and other nonstationary hypotheses in macroeconomic time series , 1996 .

[39]  Vo V. Anh,et al.  Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets , 2002, Math. Comput. Simul..

[40]  Marc Henry,et al.  Bandwidth Choice in Gaussian Semiparametric Estimation of Long Range Dependence , 1996 .

[41]  Wai Keung Li,et al.  On Fractionally Integrated Autoregressive Moving-Average Time Series Models with Conditional Heteroscedasticity , 1997 .

[42]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[43]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[44]  P. Robinson Long memory time series , 2003 .

[45]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[46]  William R. Parke What is Fractional Integration? , 1999, Review of Economics and Statistics.

[47]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[48]  Marius Ooms,et al.  A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.0 for Ox , 1999 .

[49]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[50]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[51]  Peter C. B. Phillips,et al.  EXPANSIONS FOR THE DISTRIBUTION OF THE MAXIMUM LIKELIHOOD ESTIMATOR OF THE FRACTIONAL DIFFERENCE PARAMETER , 2001, Econometric Theory.

[52]  Yixiao Sun,et al.  Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence , 2002 .

[53]  Jan Beran,et al.  Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .

[54]  P. Newbold,et al.  BIAS IN AN ESTIMATOR OF THE FRACTIONAL DIFFERENCE PARAMETER , 1993 .

[55]  Peter C. B. Phillips,et al.  Log Periodogram Regression: The Nonstationary Case , 2006 .

[56]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[57]  C. Velasco Gaussian Semi‐parametric Estimation of Fractional Cointegration , 2003 .

[58]  Laurent E. Calvet,et al.  Multifractality in Asset Returns: Theory and Evidence , 2002, Review of Economics and Statistics.

[59]  A. Walden,et al.  Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .

[60]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[61]  C. Velasco,et al.  NON-GAUSSIAN LOG-PERIODOGRAM REGRESSION , 2000, Econometric Theory.

[62]  Domenico Marinucci,et al.  Alternative forms of fractional Brownian motion , 1998 .

[63]  Katsuto Tanaka,et al.  THE NONSTATIONARY FRACTIONAL UNIT ROOT , 1999, Econometric Theory.

[64]  Richard T. Baillie,et al.  Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models , 1993 .

[65]  P. Phillips,et al.  Local Whittle estimation in nonstationary and unit root cases , 2004, math/0406462.

[66]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[67]  P. Whittle Hypothesis testing in time series analysis , 1954 .

[68]  D. Surgailis,et al.  A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate , 1990 .

[69]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[70]  L. Giraitis Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory , 2002 .

[71]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[72]  Donald W. K. Andrews,et al.  A BIAS-REDUCED LOG-PERIODOGRAM REGRESSION ESTIMATOR FOR THE LONG-MEMORY PARAMETER , 2003 .

[73]  P. Robinson,et al.  Statistical inference for a random coefficient autoregressive model , 1978 .

[74]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .